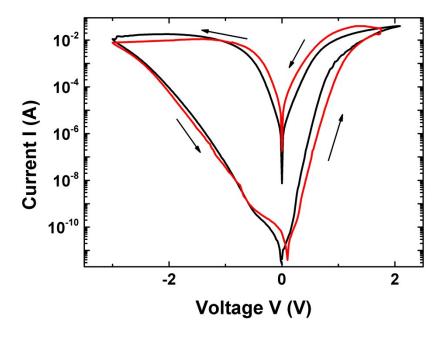
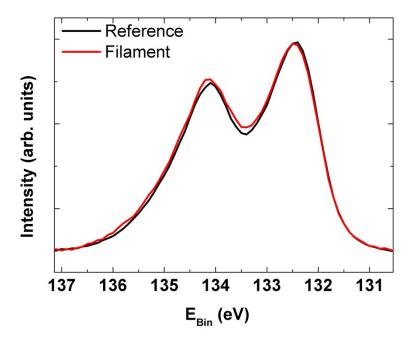
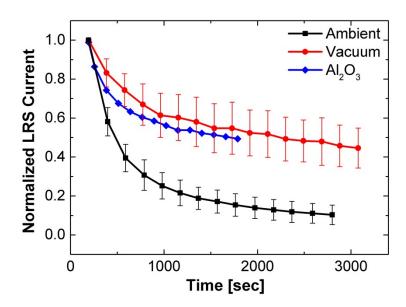
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016


Nanoscale

Supplementary Information


Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO₃/metal devices

C. Baeumer, a N. Raab, a T. Menke, a C. Schmitz, a R. Rosezin, a P. Müller, a M. Andrä, a V. Feyer, a R. Bruchhaus, b F. Gunkela, c, C.M. Schneider, a R. Wasera, c and R. Dittmann a


Supplementary Figures

Supplementary Fig. 1: I-V-characteristic of Pt/Nb:SrTiO₃ junctions and Au/Nb:SrTiO₃ junctions (black and red lines, respectively).

Supplementary Fig. 2: Sr 3d spectra for the filament and the surrounding (red and black line, respectively) for the device switched back to the HRS shown in Fig. 4e and f of the main text.

Supplementary Fig. 3: Retention measurement of the LRS (low current limit \rightarrow homogeneous switching) under ambient and vacuum conditions (black and red symbols, respectively). The retention times can also be improved through the insertion of a thin Al₂O₃ layer (blue symbols).