Electronic Supplementary Information (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information

Structural and Electronic Engineering of 3DOM WO₃ by Alkali Metal

Doping for Improved NO₂ Sensing Performance

Zhihua Wang, Xiaoxiao Fan, Dongmei Han, Fubo Gu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

Fig. S1 Raman spectrum of the 3DOM samples, from a to f are WO₃ and Li⁺-, Na⁺-, K⁺-, Rb⁺-, Cs⁺-

doped WO₃, respectively.

Fig. S2 SEM and TEM images of the 3DOM samples: (a), (b) 3DOM WO₃/Na; (c), (d) 3DOM WO₃/K; (e), (f) 3DOM WO₃/Rb; (g), (h) 3DOM WO₃/Cs.

Fig. S3 STEM images and elemental mappings of the 3DOM samples: (a) Na⁺-, (b) K⁺-, (c) Rb⁺and (d) Cs⁺- doped 3DOM WO₃.

Fig. S4 XPS spectra of the 3DOM samples: (a) full-range survey spectrum; (b) high magnification of the W4f spectrum; (c) W4f spectrum; (d) O1s spectrum, from a to f are WO₃ and Li⁺-, Na⁺-, K⁺-, Rb⁺-, Cs⁺- doped WO₃, respectively.

Fig. S5 PL spectrum of the 3DOM samples.

Fig. S6 Transient plot of nonporous WO_3 to 500 ppb NO_2 at the optimum working temperature (150 °C).

Fig. S7 Sensing stability of 3DOM WO₃/Li for nearly one month.

Fig. S8 Response of 3DOM WO₃/Li to NO₂ concentration at room temperature (25 °C), inset: the corresponding log S_{g} -1 versus log C_{g} curves.