Electronic Supplementary Information

2D-MoO₃ nanosheets for superior gas sensors

Fangxu Ji,^a Xianpei Ren,^a Xiaoyao Zheng,^a Yucheng Liu,^a Liuqing Pang,^a Jiaxing Jiang,^a Shengzhong (Frank) Liu^{a,b,*}

^aKey Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
^bDalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
*Corresponding author. E-mail: szliu@dicp.ac.cn; Tel: +86-29-8153-0785

Fig. S1 Sensor response toward 100ppm alcohol vapor at different operating temperatures. The 2D-MoO₃ material was prepared using different solvents. (a),

deionized water; (b), 25vol% ethanol/water mixture; (c), 50vol% ethanol/water mixture; (d), 75vol% ethanol/water mixture; (e), ethanol; (f), IPA; (g), DMF; (h), DMSO.

Hansen solubility parameters

It has been established in the field that the dispersion of nanomaterials can be partially predicted by the Hansen solubility parameters (HSP). There are three key HSP parameters used to describe the solvent: δD , δP , and δH , which describes the dispersive, polar, and hydrogen-bonding characteristics respectively. The HSP distance R_a is used to evaluate the level of adaptation [Eq. (1)].

$$R_{a} = [4(\delta_{D,solv} - \delta_{D,solu})^{2} + (\delta_{P,solv} - \delta_{P,solu})^{2} + (\delta_{H,solv} - \delta_{H,solu})^{2}]^{0.5}$$
[Eq. (1)].

The smaller the R_a value, the higher the expected solubility. If the HSP parameters of a nanomaterial are known, the R_a value can be used as a guide for finding a single efficient solvent for its dispersion. For solvent mixtures, the HSP theory can be expended using a linear combination technique for all above three parameters [Eq. (2)].

$$\delta_{blend} = \sum \phi_{n,comp} \delta_{n,comp}$$
 [Eq. (2)]

where \emptyset is the volume fraction for each composition.

Therefore, Equations (1) and (2) enable us to predict the solubility of different nanomaterials in various solvent mixtures, which effectively allows us to design ideal solvent systems.

Conditioning curve

Fig. S2 The conditioning curve for the gas sensor test.

The stability test of gas sensor

For metal oxide material, the gas sensing performance is stable, and the sensing properties will have no too big change within three months. The following figures show the reproducibility of temporal response of 2D-MoO₃ exposed to 100 ppm alcohol vapor at 300°C. It is seen that the sensors maintain its initial response amplitude without a clear decrease upon successive sensing tests, indicating that 2D-MoO₃ possesses good repeatability.

Fig. S3(a) Sensor response as a function of test time for two days, with 14 cycles tested for each day.

Fig. S3(b) Sensor response as a function of test time for two days. Only 3 typical cycles shown for each day.

Fig. S3(c) Sensor response value as a function of test cycles for two days, with 14 cycles tested for each day.

SEM images

Fig.S4 SEMs before(a) and after(b) gas sensing experiments.

	deionized	25%	50%	75%				
Solvent	water	ethanol	ethanol	ethanol	ethanol	IPA	DMSO	DMF
Concentration								
(mg/ml)	0.022	0.139	0.182	0.104	0.034	0.08	0.118	0.098

Table S1 The saturated concentration of MoO₃ nanosheets in different solvents.

Table S2 The specific response data of MoO₃ nanosheets in different solvents.

Temperature/°C	175	200	225	250	275	300	325	350
Bulk MoO ₃	1.3	1.8	2.8	3.9	4.7	8.0	7.0	5.4
deionized water	2.6	4.3	8.0	14.0	17.8	22.0	5.1	3.7
25% ethanol	2.0	4.4	7.7	9.8	17.3	31.5	16.2	8.4
50% ethanol	3.1	8.7	10.6	16.5	20.0	33.1	16.7	9.9
75% ethanol	2.2	3.3	9.4	12.0	19.0	28.3	19.1	7.4
ethanol	3.1	6.1	9.3	10.0	14.3	21.3	8.9	6.8
IPA	2.5	3.7	8.0	10.3	19.1	28.1	16.1	13.7
DMSO	4.1	6.2	9.1	15.8	16.9	18.9	8.5	3.6
DMF	3.3	4.9	7.0	11.6	13.0	17.8	8.8	3.3

Table S3 The sensor response time and recovery time of MoO₃ nanosheets tested at

	Bulk MoO ₃	deionized water	25% ethanol	50% ethanol	75% ethanol	ethanol	IPA	DMSO	DMF
Response time/s	27	25	25	21	24	22	23	23	21
Recovery time/s	26	16	11	10	14	11	13	21	17

the optimum working temperature $(300^{\circ}C)$.