Supplementary Information

Vertically aligned nanostructured TiO₂ photoelectrodes for high efficiency perovskite solar cells via block copolymer template approach

Myung-Seok Seo,^{a,b} Inyoung Jeong,^{a,c} Joon-Suh Park,^d Jinwoo Lee,^c Il Ki Han,^d Wan In Lee,^e Hae Jung Son,^a Byeong-Hyeok Sohn,^{b*} and Min Jae Ko^{a,f*}

^aPhoto-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea

^bDepartment of Chemistry, Seoul National University, Seoul 08826, Korea

^cDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea

^dMaterials and Life Science Research Division, Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea

^eDepartment of Chemistry and Chemical Engineering, Inha University, Incheon 22201, Korea /KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea

*Corresponding author:

(M.J.K.) Tel: +82-2-958-5518; Fax: +82-2-958-6649; E-mail: mjko@kist.re.kr (B.-H.S.) E-mail: bhsohn@snu.ac.kr

Fig. S1 FE-SEM images of perovskite solar cells using TiO_2 nanostructures from BCPs nanotemplates as an electron transport layer: (a) TiO_2 nanorods; (b) TiO_2 nanowalls. Both scale bars are 500 nm.

Fig. S2 FE-SEM images of perovskite film coated on FTO/compact TiO_2 layer/ TiO_2 nanostructures: (a) TiO_2 nanorods; (b) TiO_2 nanowalls. Both scale bars are 200 nm.

Fig. S3 (a) Reflectance spectra of the TiO_2 nanostructures. (b) UV-vis spectra of the TiO_2 nanostructures/CH₃NH₃PbI₃ films.

Fig. S4 Histogram of the PCE obtained from 20 samples fabricated with TiO_2 nanorods and nanowalls.

Samples	$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA/cm^2})$	FF (%)	PCE (%)
TiO ₂ nanorods	1.01 ± 0.01	20.0 ± 1.2	70.7 ± 3.8	14.7 ± 0.7
TiO ₂ nanowalls	0.99 ± 0.01	16.0 ± 0.9	64.1 ± 3.2	10.3 ± 1.0

Table S1. Average photovoltaic parameters calculated from 20 samples fabricated with TiO_2 nanorods and nanowalls.

Fig. S5 Hysteresis of the J-V curves measured in forward and reverse scan direction (scan rate at 100 ms): (a) TiO₂ nanorods; (b) TiO₂ nanowalls.

Sample	$V_{\rm OC}\left({ m V} ight)$	$J_{\rm SC}~({\rm mA/cm^2})$	FF (%)	PCE (%)
TiO ₂ NR, Forward	1.01	19.1	65.6	12.7
TiO ₂ NR, Reverse	1.02	19.7	73.7	14.8
TiO ₂ NW, Forward	1.00	15.5	59.1	9.2
TiO ₂ NW, Reverse	1.01	16.2	67.8	11.1

Table S2. Photovoltaic parameters of perovskite solar cells obtained from TiO_2 nanostructures in the hysteresis measurement.