Porous cubes constructed by cobalt oxide nanocrystals with graphene sheets coating for enhanced lithium storage properties

Hongbo Geng,^{a,b} Yuanyuan Guo,^b Xianguang Ding,^c Huangwen Wang,^b Yufei Zhang,^b Xinglong Wu,^b Jiang Jiang,^c Junwei Zheng,^d Yonggang Yang^a and Hongwei Gu^{*a}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

E-mail: hongwei@suda.edu.cn

^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

^ci-Lab and Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.

^dCollege of Physics, Optolectronics and Energy, Soochow University, Suzhou, 215006, China.

Fig. S1 Selected-area electron diffraction (SAED) pattern of the Co₃[Co(CN)₆]₂ cubes.

Fig. S2 TGA plot of the $Co_3[Co(CN)_6]_2$ cubes.

Fig. S3 Selected-area electron diffraction (SAED) pattern of the porous Co₃O₄ cubes.

Fig. S4 XRD pattern of the porous Co₃O₄ cubes.

Fig. S5 Representative CV spectra of the porous Co₃O₄ cubes electrode for the first, second, third, fourth, fifth and sixth cycle at a scan rate of 0.1 mV s⁻¹ between 0.01 and 3 V.

Fig.S6 The coulombic efficiency of Co₃O₄@G electrode.

Fig. S7 SEM images (A-B) of $Co_3O_4@G$ electrode after 80 cycles at the current density of 200 mA g⁻¹.

Table	S1.	Comparison	of	specific	capacities	of	the	current	Co ₃ O ₄ @G	electrode	with	other	hybrid	electrode
materi	als re	eported in lite	rati	ires.										

Materials	Current density	Cycle number	Specific capacity (mA h g ⁻¹)	Ref.	
Graphene anchored with Co ₃ O ₄ nanoparticles	50 mA/g	30	about 935 mA h g ⁻¹	1	
Multishelled Co ₃ O ₄ hollow spheres	178 mA/g	50	about 866 mA h g ⁻¹	2	
Porous Co ₃ O ₄ spheres	100 mA/g	80	about 900 mA h g-1	3	
Co ₃ O ₄ /Carbon nanowires	100 mA/g	20	about 534 mA h g ⁻¹	4	
Sandwich-like Co ₃ O ₄ /TiO ₂ composite	100 mA/g	80	about 800 mA h g ⁻¹	5	
Co ₃ O ₄ hexapods	100 mA/g	40	about 800 mA h g ⁻¹	6	
Co_3O_4 on the carbon matrix	100 mA/g	80	about 900 mA h g-1	7	
Co ₃ O ₄ @TiO ₂ core-shell nanorods	200 mA/g	80	about 803 mA h g ⁻¹	8	
Co ₃ O ₄ nanocages	178mA/g	50	about 846 mA h g ⁻¹	9	

Co ₃ O ₄ nanobelt array	177mA/g	25	about 750 mA h g ⁻¹	10
Co ₃ O ₄ @G	200 mA/g	80	about 980 mA h g ⁻¹	Current study

References:

- Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li and H. M. Cheng, *ACS Nano*, 2010, 4, 3187-3194.
- X. Wang, X. Wu, Y. Guo, Y. Zhong, X. Cao, Y. Ma and J. Yao, *Adv. Funct. Mater.*, 2010, 20, 1680-1686.
- D. H. Ge, H. B. Geng, J. Q. Wang, J. W. Zheng, Y. Pan, X. Q. Cao and H. W. Gu, Nanoscale, 2014, 6, 9689-9694.
- P. Zhang, Z. P. Guo, Y. D. Huang, D. Z. Jia and H. K. Liu, J. Power Sources, 2011, 196, 6987-6991.
- 5. W. T. Li, K. N. Shang, Y. M. Liu, Y. F. Zhu, R. H. Zeng, L. Z. Zhao, Y. W. Wu, Lin Li, Y. H. Chu, J. H. Liang and G. Liu, *Electrochim. Acta*, 2015, **174**, 985-991.
- L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen and G. Z. Shen, J. Mater. Chem., 2012, 22, 23541-23546.
- Y. L. Tan, Q. M. Gao, C. X. Yang, K. Yang, W. Q. Tian and L. H. Zhu, *Sci. Rep.*, 2015, 5, 12382.
- H. B. Geng, H. X. Ang, X. G. Ding, H. T. Tan, G. L. Guo, G. L. Qu, Y. G. Yang, J. W. Zheng, Q. Y. Yan and H. W. Gu, *Nanoscale*, 2016, 8, 2967-2973.
- D. Q. Liu, X. Wang, X. B. Wang, W. Tian, Y. S. Bando and D. Golberg, *Sci. Rep.*, 2013, 3, 2543.
- 10. Y. Wang, H. Xia, L. Lu and J. Y. Lin, ACS Nano, 2010, 4, 1425-1432.