Supporting Information

Ultralow Power Complementary Inverter Circuits Using Axially Doped p- and nchannel Si Nanowire Field Effect Transistors

Ngoc Huynh Van^{1,†}, Jae-Hyun Lee^{2,†}, Dongmok Whang², and Dae Joon Kang^{1,*}

¹Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

²School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

† These authors contributed equally to this work

* Corresponding author: djkang@skku.edu

1. Transfer characteristics $(I_{ds}-V_g)$ across p-n region diode

* Corresponding author: djkang@skku.edu

Figure S1. Transfer characteristics $(I_{ds}-V_g)$ across p-n junction diode at (a) $V_{ds} = 0.1$ V and (b) $V_{ds} = 1$ V.

When the forward bias voltage is set above the rectifying voltage of p-n junction diode, the diode should work at ON state. Thus, the region close to the p–n junction can exhibit a clear gate effect. Therefore, the ambipolar gate effect should be observed in Si NWs p-n junction diode (Fig. S1b).¹

On the other hand, in case where the forward bias voltage was set at 0.1 V, which is lower than the rectifying voltage of our p-n junction diodes that range from 0.15 to 0.8 V according to the doping concentrations, the diode would operate at OFF state. Thus, the low doping concentration of p- and n-type regions will be strongly affected by the gate bias as is evident from the p- and n-type Si NWFETs device characteristics (See Fig. 2f, h). In fact, if p- and n-type regions of Si NWFETs are strongly affected by the gate bias, no gate effect should be observed from the p-n junction diodes (Fig. S1a). This is because one side of junction will always be at OFF state irrespective of the polarity of the gate bias. Therefore, conductance through p-n junction is always OFF at any gate voltage.

2. Four probe measurements

Figure S2. Optical images and electrical four-probe transport characteristics of p-n Si NW FETs. (a, b) Optical images of p-n Si NW FET devices. Four-probe voltage–current measurements of the (c) p-type region and (d) n-type region of the p-n Si NW FETs.

The p-type region of the p-n Si NW had a resistance (*R*) of $1.22 \times 10^6 \Omega$, which was extrapolated from the linear region of the current–voltage curve obtained by the four-probe measurements shown in Fig. S1c. The resistivity, $\rho = 0.07 \Omega$ cm, was calculated according to $\rho = RA/L$, where $A = \pi r^2$ is the p-n Si NW cross section, *L* is the conducting channel length of the NW (~3.5 µm), and *r* is the radius of the NW (~25 nm). The resistance, $R = 3.16 \times 10^6 \Omega$, and resistivity, $\rho = 0.18 \Omega$ cm, were calculated for the n-type regions of the p-n Si NWs from Fig. S2d.

3. Summary of electrical properties of p- and n-type regions with different gas doping concentrations

Table S1. Summary of threshold voltage, transconductance, mobility, subthreshold swing andcarrier concentration for devices shown in Fig. 3a, b.

Parameters	p-type FET		n-type FET	
Doping gas concentration	6,000:1	3,000:1	6,500:1	3,500:1
Threshold Voltage (V)	-0.5	-3.5	1.5	4.0
Transconductance (nS)	0.9	14.3	6.0	58.3
Mobility (cm ² V ⁻¹ s ⁻¹)	3.3	52.9	22.3	215.7
Subthreshold swing (mV dec ⁻¹)	83.5	248.5	108.4	217.9
Carrier concentration (×10 ¹⁷ /cm ³)	1.5	11.0	4.5	12.0

4. The electrical characteristics table of the p-n Si NW FETs

	p-type FET	n-type FET
Resistance (×10 ⁶ Ω)	1.22	3.16
Resistivity (Ωcm)	0.07	0.18
Transconductance (nS)	142.4	108.2
Mobility (cm ² /V.s)	52.6	39.9
Carrier concentration (×10 ¹⁷ e/cm ³)	7.5	6.0
Subthreshold swing (mV/dec)	178	182
Threshold voltage (V)	2.5	-2.0

Table S2. Summary of the electrical transport characteristics of p-n Si NW FET devices.

5. Mobility comparison

Table S3. Mobility comparison between the Si NW FETs in this study and other FETs madefrom single p-type and n-type Si NWs reported elsewhere.

References	p-type	n-type	Ref.
	Mobility (cm ² V ⁻¹ s ⁻¹)	Mobility (cm ² V ⁻¹ s ⁻¹)	
Z. Jiang <i>et al</i> .	-	14	1
T. W. Koo <i>et al</i> .	25	50	2
Тt. Но <i>et al</i> .	28 ± 2.6	28 ± 2.6	3
K. D. Buddharaju <i>et al</i> .	112	151	4
N. H. Van <i>et al</i> .	46.2	59.3	5
This work	52.6	39.9	

References:

- 1. Z. Jiang, Q. Qing, P. Xie, R. Gao and C. M. Lieber, *Nano Letters*, 2012, **12**, 1711-1716.
- 2. T. W. Koo, D. S. Kim, J. H. Lee, Y. C. Jung, J. W. Lee, Y. S. Yu, S. W. Hwang, D. Whang, *J. Phys. Chem. C*, 2011, **115**, 23552.
- 3. T.-t. Ho, Y. Wang, S. Eichfeld, K.-K. Lew, B. Liu, S. E. Mohney, J. M. Redwing and T. S. Mayer, *Nano Letters*, 2008, **8**, 4359-4364.
- 4. K. D. Buddharaju, N. Singh, S. C. Rustagi, S. H. G. Teo, G. Q. Lo, N. Balasubramanian and D. L. Kwong, *Solid-State Electronics*, 2008, **52**, 1312-1317.
- 5. N. H. Van, J.-H. Lee, J. I. Sohn, S. N. Cha, D. Whang, J. M. Kim and D. J. Kang, *Nanoscale*, 2014, **6**, 5479-5483.