Theoretical Characterization of the Surface Composition of Ruthenium Nanoparticles in Equilibrium with Syngas

Supplementary Informations

Cusinato, Lucy; Martínez-Prieto, Luis M.; Chaudret, Bruno; del Rosal, Iker; Poteau, Romuald*

Université de Toulouse; INSA, UPS, CNRS; LPCNO (IRSAMC), 135 avenue de Rangueil, F-31077 Toulouse, France lucy.cusinato@insa-toulouse.fr, lmmartin@insa-toulouse.fr, bruno.chaudret@insa-toulouse.fr, idel_ros@insa-toulouse.fr, *romuald.poteau@univ-tlse3.fr

S1 Faceting of large RuNPs

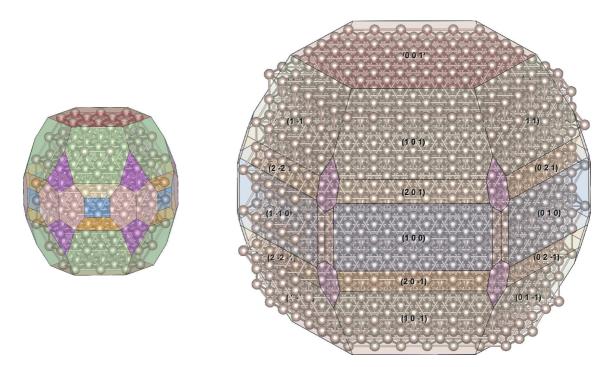


Figure S1: Left panel: Wulff construction of a bare 1.6 nm hcp RuNP. Right panel: Wulff construction of a bare 3 nm hcp RuNP, with B5 sites between the (001) and (101) crystallographic planes (adapted from Honkala *et al* (2005), *Science*, **307**, 555-558).

S2 Single H and CO adsorption on a RuNP. Low coverage

S2.1 Optimized geometries and adsorption energies

Coordination type	Isomer	d_{H-Ru} (Å)
η	5^H	1.66
η	6^H	1.65
η	8^H	1.65
μ	7^H	1.87 / 1.78
μ	4^{H}	1.83 / 1.81
μ	1^{H}	1.83 / 1.81
μ	11^H	1.93 / 1.73
μ_3	2^{H}	1.97 / 1.92 / 1.90
μ_3	10^H	1.95 / 1.93 / 1.91
μ_3	3^{H}	1.98 / 1.95 / 1.81
μ_3	9^H	2.01 / 1.92 /1.92

Table S1: Ruthenium-Hydrogen distances for the \mbox{Ru}_{55} isomers

Table S2: H_2 dissociative adsorption energies (kcal.mol⁻¹) at several surface sites of Ru_{55} .

Coordination type	Isomer	\mathbf{E}_{ads} on \mathbf{Ru}_{55}
η	5^H	-9.8
η	6^H	-6.5
η	8^H	-5.8
μ	7^H	-14.9
μ	4^{H}	-13.8
μ	1^{H}	-12.8
μ	11^H	-5.6
μ_3	2^{H}	-13.8
μ_3	10^H	-13.5
μ_3	3^H	-11.5
μ_3	9 ^{<i>H</i>}	-11.6

Table S3: CO molecular adsorption energies (kcal.mol⁻¹) at several surface sites of Ru₅₅.

Coordination type	Isomer	\textbf{E}_{ads} on \textbf{Ru}_{55}
η	2^{CO}	-49.8
η	11^{CO}	-49.4
η	1^{CO}	-46.5
η	7^{CO}	-45.4
η	5^{CO}	-42.6
η	9^{CO}	-46.6
η	2^{OC}	-3.9
μ	10^{CO}	-52.7
μ	8 ^{CO}	-45.4
μ_4	6^{CO}	-43.9
(η,η^2)	3 ^{CO} 4 ^{CO}	-46.9
(η, η^2)	4^{CO}	-40.3

Coordination type	Isomer	d_{CO-Ru} (Å)
η	2^{CO}	1.87
η	11^{CO}	1.87
η	1^{CO}	1.86
η	7^{CO}	1.89
η	5^{CO}	1.89
η	9^{CO}	1.86
η	2^{OC}	2.19*
μ	10^{CO}	2.05 / 2.04
μ	8 ^{CO}	2.07 / 2.04
μ_4	6^{CO}	2.33 / 2.33 / 2.20 / 2.11
(η, η^2)	3 ^{CO}	2.38 / 2.09 / 1.98 / 2.26*
(η,η^2)	4^{CO}	2.49 / 2.31 / 2.05 / 1.97 / 2.20*

Table S4: Ruthenium-Carbon distances for the Ru₅₅ isomers. Values with * correspond to Ruthenium-Oxygen distances.

S2.2 Multicarbonyl sites at apex location

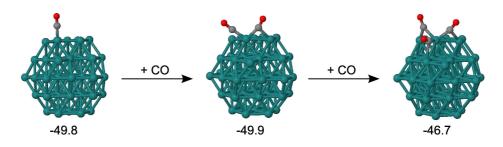
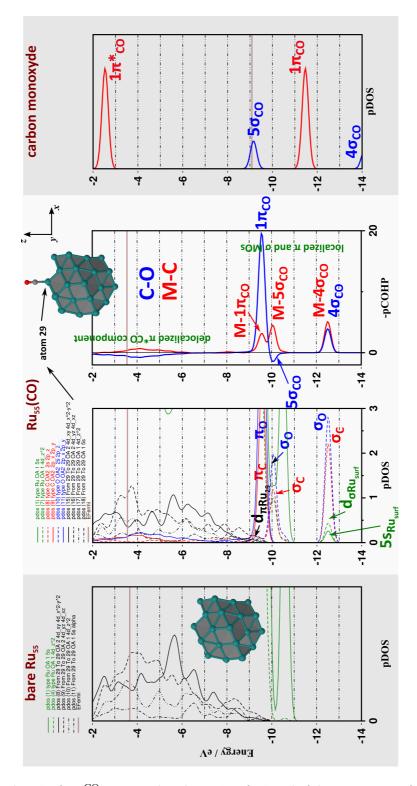



Figure S2: Geometries and adsorption energies per CO in kcal.mol⁻¹ for 2^{CO} , 2^{2CO} and 2^{3CO} .

S2.3 DOS and COHP profiles for CO*Ru₅₅

Figure S3: pCOHP and pDOS for $\mathbf{2}_{\mathrm{Ru}}^{\mathrm{CO}}$, compared to the pDOS of CO and of the Ru₅₅ moiety, frozen in the geometry of $\mathbf{2}_{\mathrm{Ru}}^{\mathrm{CO}}$.

S3 Single H and CO adsorption on a RuNP. High coverages

S3.1 Optimized geometries

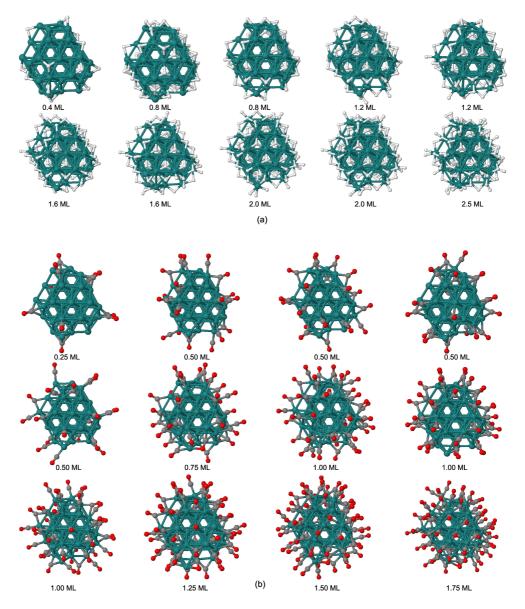


Figure S4: DFT-optimized high coverages RuNP H (a) CO (b). Owing to the reduced scale, hydrogenated RuNPs with subsurface H are not shown here, since they are much alike the RuNPs plotted here.

coverage	H coord.	E _{DFT}	E_{ads}
0.4 ML	11 μ	-492.69	-14.83
	6 μ ₃ 16 μ		
0.4 ML + subsurface	10 μ 7 μ ₃	-525.13	-11.31
	3 Oh		
0.8 ML ₁	22 μ	-564.40	-14.41
0.0 ME1	13 μ_3	501.10	11.11
	19 µ	501.00	0.70
0.8 ML_1 + subsurface	18 μ ₃ 7 Oh	-591.93	-9.76
	24 μ		
0.8 ML 2	12 μ_3	-567.59	-13.89
	22 μ		
0.8 ML ₂ + subsurface	16 μ ₃	-595.17	-9.46
	7 Oh		
	2 η		
1.2 ML_1	34 μ	-634.13	-13.42
	$17 \ \mu_3$		
	2η 20		
1.2 ML_1 + subsurface	30 μ 21 μ ₃	-659.14	-9.26
	21 µ3 9 Oh		
	2 η		
$1.2 \ ML_2$	$37\ \mu$	-634.19	-13.44
	14 μ_3		
	2 η		
	32 µ	650.40	0.05
1.2 ML_2 + subsurface	18 μ ₃	-659.40	-9.35
	1 μ ₄ 9 Oh		
	<u> </u>		
$1.6 \ ML_1$	43 μ	-696.53	-11.80
-	21 μ_3		
	5 η		
1.6 ML ₁ + subsurface	44 µ	-722.91	-9.08
, <u>-</u> , , cascandoo	21 μ ₃		2.00
	9 Oh		
$1.6 \ ML_2$	8η 45μ	-697.69	-12.19
1.0 IVIL 2	$17 \mu_3$	-091.09	-12.19
	<u>-11 μ3</u> 8 η		
16 MI	42 µ	702.01	0.25
1.6 ML_2 + subsurface	20 µ ₃	-723.81	-9.35
	9 Oh		

S3.2 Energies and coordination modes

coverage	H coord.	E _{DFT}	E _{ads}
	16 η		
	57 μ	-760.59	-10.26
2.0 ML ₁	14 μ_3	-700.59	
	1 μ_4		
	17 η		
2.0 ML ₁ +subsurface	53 µ	-784.30	-8.40
	17 µ ₃	-704.30	
	9 Oh		
	16 η		
2.0 ML ₂	52 μ	-761.26	-10.43
	20 μ_3		
	17 η		-8.55
2.0 ML_2 + subsurface	52 µ	-788.69	
2.0 ME ₂ Subsurface	19 µ ₃	-100.05	-0.55
	9 Oh		
	22 η		
2.5 ML	49 μ	-839.13	-9.10
2.5 IVIL	15 μ_3	-059.15	-9.10
	12 H_2		

 $\label{eq:table S5: H coordination modes for each considered coverage. E_{DFT} is given in eV and E_{ads} in kcal.mol^{-1}.$

coverage	CO coord.	E _{DFT}	E_{ads}
0.25 ML	$egin{array}{ccc} 1 & \eta \ 6 & \mu \ 4 & \mu_3 \end{array}$	-610.75	-49.99
0.50 ML ₁	5η 15μ $2 \mu_3$	-795.40	-48.18
0.50 ML ₂	$egin{array}{c} 9 \ \eta \ 10 \ \mu \ 3 \ \mu_3 \end{array}$	-794.98	-47.74
0.50 ML ₃	$egin{array}{c} 1 \ \eta \ 14 \ \mu \ 7 \ \mu_3 \end{array}$	-796.15	-48.97
0.50 ML ₄	18 η 4 μ	-794.70	-47.44
0.75 ML	$ \begin{array}{c} 7 & \eta \\ 18 & \mu \\ 7 & \mu_3 \\ 1 & (\eta, \eta^2) \end{array} $	-979.52	-47.21
$1.00 \ ML_1$	$egin{array}{c} 9 \ \eta \ 30 \ \mu \ 4 \ (\eta, \eta^2) \end{array}$	-1144.42	-45.42
1.00 ML_2	$egin{array}{cccc} 18 & \eta \ 21 & \mu \ 4 & \mu_3 \end{array}$	-1143.74	-45.06
1.00 ML ₃	$26 \ \eta \\ 15 \ \mu \\ 2 \ \mu_3$	-1143.14	-44.74
1.25 ML	$\begin{array}{c} 17 \ \eta \\ 32 \ \mu \\ 5 \ \mu_3 \\ 1 \ (\eta, \eta^2) \end{array}$	-1339.14	-42.81
1.50 ML	$\begin{array}{c} 25 \eta \\ 34 \mu \\ 5 \mu_3 \\ 1 (\eta,\eta^2) \end{array}$	-1514.09	-40.02
1.75 ML	$\begin{array}{c} {35} \ \eta \\ {33} \ \mu \\ {5} \ \mu_{3} \\ {2} \ (\eta, \eta^2) \end{array}$	-1651.27	-36.51

 $Table \ S6: \ \textbf{CO} \ \textbf{coordination} \ \textbf{modes} \ \textbf{for each considered coverage}. \ \textbf{E}_{\text{DFT}} \ \textbf{is given in eV} \ \textbf{and} \ \textbf{E}_{\text{ads}} \ \textbf{in kcal.mol}^{-1}.$

S4 Phase diagrams without ZPE corrections

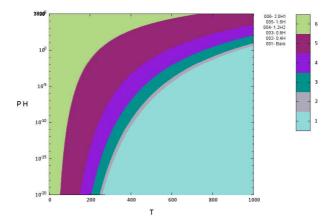


Figure S5: $({\it T}, {\it p}_{\rm H_2})$ phase diagram for H_2 adsorption on the 55-atoms RuNP without ZPE corrections

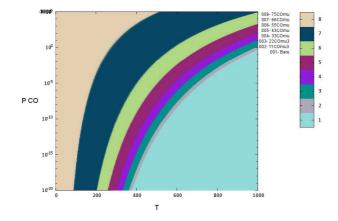


Figure S6: $(T, p_{\rm CO})$ phase diagram for CO adsorption on the 55-atoms RuNP without ZPE corrections.

S5 H and CO co-adsorption on a RuNP

S5.1 Optimized geometries

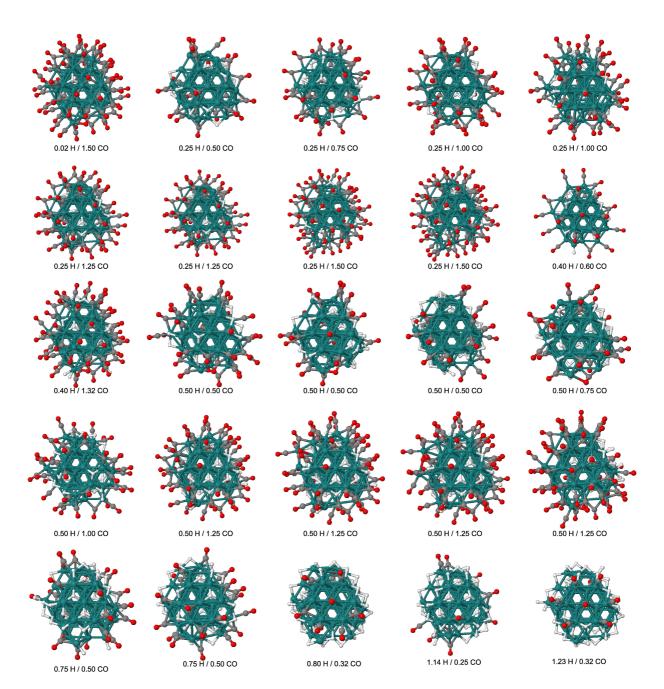


Figure S7: DFT-optimized high coverages RuNP H and CO.

S5.2 Adsorption energies and coordination modes

able S7: H/CC					coverage	H coord.	CO coord.	EDFT	E_{ads}
dered coverage.	E _{DFT} is g	given in eV	and E _{ads} in	1		10	5η		
$cal.mol^{-1}$.					0.50/0.50 ML ₁	12 μ	$11 \ \mu$	-880.82	-29.93
					1	10 μ_3	5 μ_3		
							$1 (\eta, \eta^2)$		
coverage	H coord.	CO coord.	E _{DFT}	E _{ads}		1.0	3 η		
8-		25 η	-011			16 μ	10 μ	001.10	00.1
		34η			0.50/0.50 ML ₂	6 μ_3	$7 \mu_3$	-881.16	-30.13
0.02/1.50 ML	1 μ_3	6 μ_3	-1517.55	-39.4			$1 (\eta, \eta^2)$		
	1.0	$1 (\eta, \eta^2)$					$1 \mu_4$		
		1 η				0	20η	070 11	20.0
0.25/0.50 ML	7 μ	16 μ	-839.64	-37.09	$0.50/0.50 ML_3$	8μ 14	2 μ	-879.11	-29.03
1	4 μ_3	5 μ_3				14 μ_3	0		
	10	6 η				1η	8η	000 22	20.6
	4 μ	19 μ		~~ ~~	0.50/0.50 ML ₄	12μ	11μ	-880.33	-29.68
0.25/0.75 ML ₁	7 μ_3	7 μ_3	-1021.63	-38.02		9 μ_3	$3 \mu_3$		
	10	$1 (\eta, \eta^2)$				10	16 η		
		<u>29 η</u>			0.50/0.75 ML	13μ	14 μ	-1062.19	-31.8
0.25/0.75 ML ₂	5 μ	4 μ	-1018.90	-36.58	·	9 μ_3	$2 \mu_3$		
	6 μ_3	F					$1(\eta,\eta^2)$		
	- 1.0	22 η				2η	26 η	-1223.69	-31.82
	5 μ	18μ		0.50/1.00 M	0.50/1.00 ML	9μ	11μ		
$0.25/1.00 \ ML_1$	5 μ_3	3 μ_3	-1185.21	-37.73	·	9 μ_3	6 μ_3		
	$1 \mu^4$	- 110				$\frac{2 \mu^4}{1}$	22		
	 1 η	14 η				1η	22η	-1415.94	-31.33
$0.25/1.00 \text{ ML}_2$	7μ	$^{\prime}$ 28 μ	-1185.42	-37.82	$0.50/1.25 \ ML_1$	6μ	29 μ 2 μ		
,	3 μ_3	$1 \ \mu_3$				$egin{array}{c} 13 \ \mu_3 \ 2 \ \mu^4 \end{array}$	$3 \mu_3$		
	1η	13η					$\frac{1 (\eta, \eta^2)}{20 n}$		
	4 μ	35μ	1070.00	26.20	0 50/1 25 ML	5η	20 η 21 μ	1/15 0/	-31.3
0.25/1.25 ML	5 μ_3	6 μ_3	-1378.06	-36.30	0.50/1.25 ML ₂	6μ	31 µ	-1415.84	-31.3
	$1 \mu_4$	$1~(\eta,\eta^2)$				$\frac{11 \ \mu_3}{4 \ \pi}$	$\frac{4 \ \mu_3}{4 \ \eta}$		
	1η	27 η			0.75/0.50 ML ₁	4η 17 μ	4η 14 μ	-921.99	-25.6
0.05 /1 50 MI	7μ	34 μ	1550.00	22.00	0.75/0.50 WIL1			-921.99	-25.04
0.25/1.50 ML ₁	3 μ_3	6 μ_3	-1550.22	-33.99		$\frac{12 \ \mu_3}{1 \ \eta}$	4 μ ₃ 4 η		
		$1~(\eta,\eta^2)$				1η 22 μ	12μ		
	1 η	28 <i>η</i>			$0.75/0.50 \ ML_2$	9 μ_3	6 μ_3	-922.91	-26.03
	3 μ	33 μ				$1 \mu_4$	$0 \mu_3$		
$0.25/1.50 \ \text{ML}_2$	6 μ_3	4 μ_3	-1550.06	-33.93		1 µ4	10 η		
		$1~(\eta,\eta^2)$			0.82/0.32 ML	20 μ	4μ	-801.33	-22.4
	1 Oh				0.02/0.32 WE	16 μ_3	$+\mu$	-001.55	-22.7
	1 η	20 η				$\frac{10 \ \mu_3}{2 \ \eta}$	1η		
0.40/0.60 ML	14 μ	4 μ	-914.48	-32.15	1.14/0.25 ML	$\frac{2}{31} \mu$	4μ	-804.73	-18.5
0.40/0.00 ML	2 μ_3	1 μ_3	-914.40	-32.15	1.14/0.25 WE	$17 \ \mu_3$	4μ 6μ ₃	-004.15	-10.5
	$1 \ \mu_4$					$\frac{17 \ \mu_3}{1 \ \eta}$	$\frac{0 \ \mu_3}{14 \ \eta}$		
	1 η	18 η				31μ	17 II		
0.40/1.30 ML	$1~\mu$	32 μ	-1447.99	-31.91	1.23/0.32 ML	18 μ_3		-868.21	-18.5
0.40/1.30 IVIL	8 H ₂	6 μ_3	-1447.99	-21.91		$10 \ \mu_3$ 2 μ_4			
		$2 \mu_4$				$\sim \mu_4$			

S5.3 Surface-subsurface H diffusion

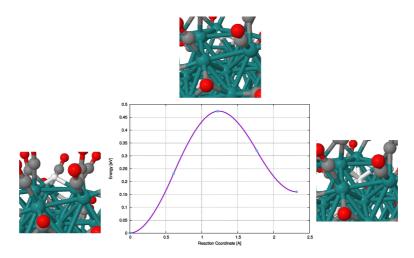
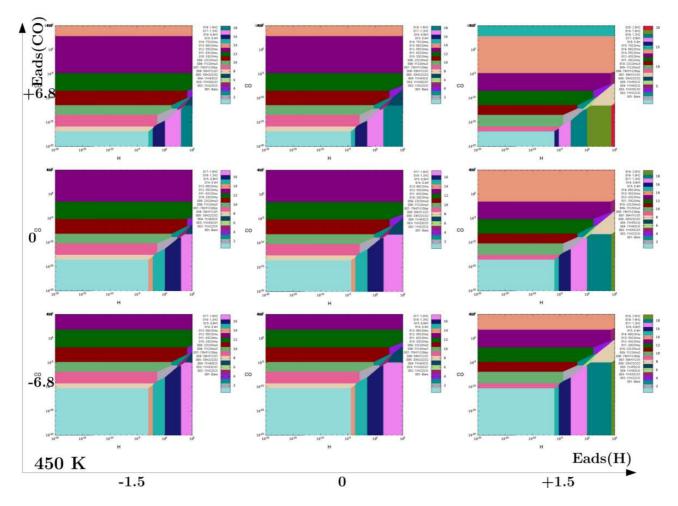



Figure S8: Fcc site - octahedral site diffusion in $Ru_{55}H_{11}(CO)_{66}$.

S6 Phase diagrams: empirical variation of the adsorption energies

Figure S9: Phase diagram for H_2 and CO adsorption on RuNP at 450 K with variation of adsorption energies : $E_{ads}(H_2)\pm1.5~kcal.mol^{-1}$ and $E_{ads}(CO)\pm6.8~kcal.mol^{-1}$

S7 Discussion

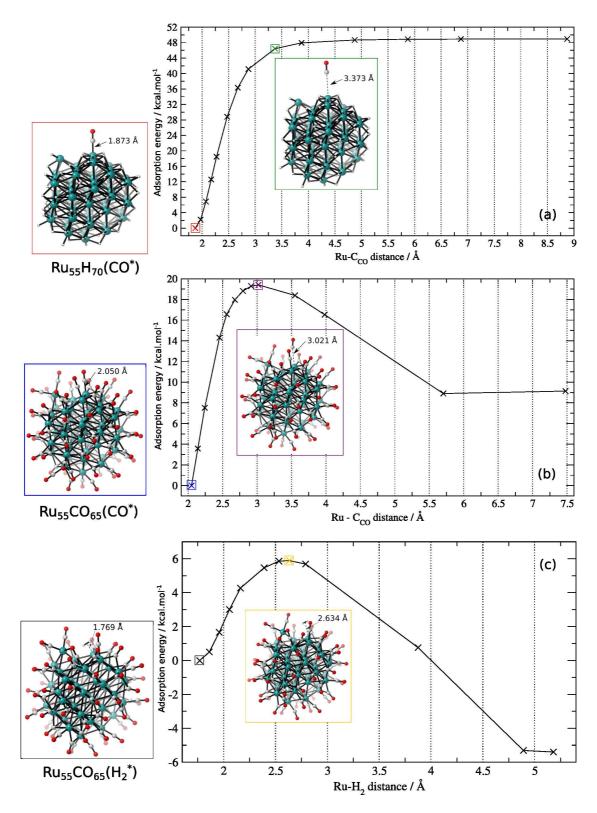


Figure S10: Surface energy scans. (a) adsorption of CO on $Ru_{55}(H)_{70}$; (b) adsorption of CO on $Ru_{55}(CO)_{65}$; (c) adsorption of H₂ on $Ru_{55}(CO)_{65}$ (the Ru_{55} core was kept frozen).

Quantification of hydrides adsorbed on RuNPs@PVP pressurized with 3 bar of syngas (1:1 molar mixture of H_2 and CO) and heated at 80 and 150 °C

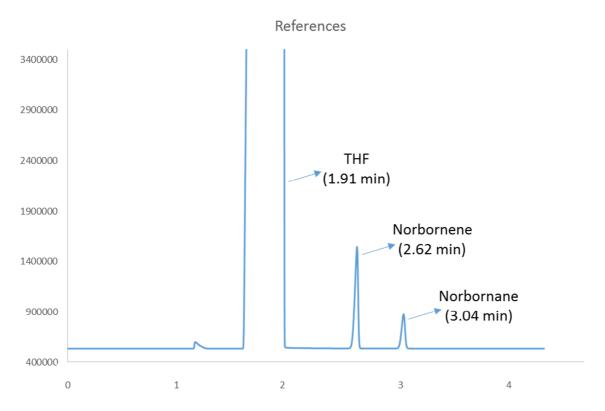


Figure S8: Gas chromatography spectrum of a reference mixture solution (THF, 2-norbornene and norbornane).

<u>LMP57</u> (150 °C)

Following the experimental procedure published in ACS Catalysis **2014**, *4*, 3016, a 2 mL quick pressure valve NMR tubes was filled with 20 mg of RuNPs@PVP (~ 8% Ru), pressurized with 3 bar of syngas (1:1 molar mixture of H₂ and CO) and heated at 150 °C for 24 h.

After this, we quantified the hydrides adsorbed following a previously reported procedure (*Angew. Chem. Int. Ed.* **2008**, *47*, 2074-2078). The NMR tube was depressurized at 150 °C. The Ru/PVP (20 mg) were re-dispersed in 2 mL of THF and reacted with 2-norbornene (7.5 mg, 0.08 mmol, 5 equiv.). The amount of norbornane formed was measured by G.C. analysis.

After 24h of vigorous stirring in a 10 ml flask, only traces of norbornane was observed by G.C, confirming that there are not hydrides adsorbed at ruthenium surface after these conditions.

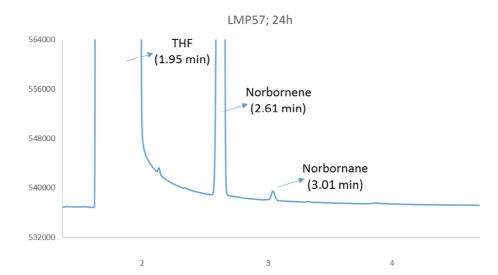


Figure S9: Gas chromatography spectrum recorded after reaction of 7.5 mg of 2-norbornene with 20 mg of RuNPs@PVP in a 2 mL quick pressure valve NMR tube obtained after 3 bar of syngas at 150 °C (1:1 molar mixture of H₂ and CO).

Compound	r.t.	area	%
THF	1.95	3295536	-
2-norbornene	2.61	18111	99.86
norbornane	3.01	25	0.14

Calculation of hydrides adsorbed on RuNPs@PVP:

RuNPs@PVP (~8 % Ru): Size = 1.3 (0.2) nm Total Atoms = 114 Core atoms = 36 Surface atoms = 78 % Surface atoms = 68 %

1) 20 mg de RuNPs@PVP \rightarrow 0.016 mmol Ru \rightarrow 0.011 mmol Ru_s

- Norbornane consumed = 0.08 mmol (initial norbornene) * 0.14 (% norbornane formed)*0.01 = 0.00011 mmol
- 3) Hydrides/surface atom = 0.00011/0.011 = 0.01

LMP58 (80 °C)

Following the experimental procedure published in ACS Catalysis **2014**, 4, 3016, a 2 mL quick pressure valve NMR tubes was filled with 20 mg of RuNPs@PVP (~ 8% Ru), pressurized with 3 bar of syngas (1:1 molar mixture of H₂ and CO) and heated at 80 °C for 24 h.

After this, we quantified the hydrides adsorbed following a previously reported procedure (*Angew. Chem. Int. Ed.* **2008**, *47*, 2074-2078). The NMR tube was depressurized at 80 °C. The Ru/PVP (20 mg) were re-dispersed in 2 mL of THF and reacted with 2-norbornene (7.5 mg, 0.08 mmol, 5 equiv.). The amount of norbornane formed was measured by G.C. analysis.

After 24h of vigorous stirring in a 10 ml flask, only traces of norbornane was observed by G.C, confirming that there are not hydrides adsorbed at ruthenium surface after these conditions.

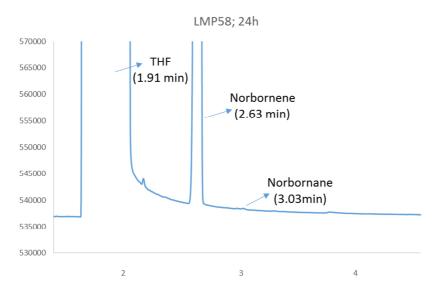


Figure S10: Gas chromatography spectrum recorded after reaction of 7.5 mg of 2norbornene with 20 mg of RuNPs@PVP in a 2 mL quick pressure valve NMR tube obtained after 3 bar of syngas at 80 °C (1:1 molar mixture of H_2 and CO).

Compound	r.t.	area	%
THF	1.91	4522913	-
2-norbornene	2.63	29040	99.99
norbornane	3.03	2.7	0.01

Calculation of hydrides adsorbed on RuNPs@PVP:

RuNPs@PVP (~8 % Ru): Size = 1.3 (0.2) nm Total Atoms = 114 Core atoms = 36 Surface atoms = 78 % Surface atoms = 68 %

- 1) 20 mg de RuNPs@PVP \rightarrow 0.016 mmol Ru \rightarrow 0.011 mmol Ru_s
- 2) Norbornane consumed = 0.08 mmol (initial norbornene) * 0.01 (% norbornane formed)*0.01 = 0.000008 mmol
- 3) Hydrides/surface atom = 0.000008/0.011 = 0.0007

LMP60 (150 °C)

Following the experimental procedure published in *ACS Catalysis* **2014**, *4*, 3016, a Fischer-Porter (80 mL) was filled with 100 mg of RuNPs@PVP (~ 8% Ru), pressurized with 3 bar of syngas (1:1 molar mixture of H_2 and CO) and heated at 150 °C for 24 h.

After this, we quantified the hydrides adsorbed following a previously reported procedure (*Angew. Chem. Int. Ed.* **2008**, *47*, 2074-2078). The Fischer-Porter was depressurized at 150 °C. After that, the Ru/PVP (100 mg) were re-dispersed in 10 mL of THF and reacted with 2-norbornene (37.5 mg, 0.4 mmol, 5 equiv.). The amount of norbornane formed was measured by G.C. analysis.

After 24h of vigorous stirring in a 80 ml flask, only traces of norbornane was observed by G.C, confirming that there are not hydrides adsorbed at ruthenium surface after these conditions.

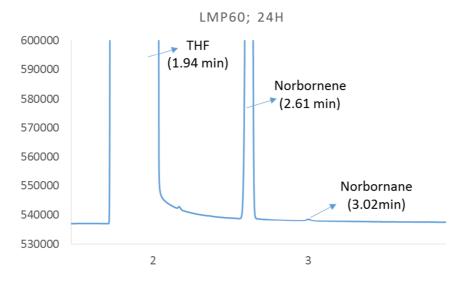


Figure S11: Gas chromatography spectrum recorded after reaction of 37.5 mg of 2-norbornene with 100 mg of RuNPs@PVP in a 80 mL Fischer-Porter obtained after 3 bar of syngas at 80 °C (1:1 molar mixture of H_2 and CO).

Compound	r.t.	area	%
THF	1.94	2930334	-
2-norbornene	2.61	15277	99.93
norbornane	3.02	11	0.07

Calculation of hydrides adsorbed on RuNPs@PVP:

RuNPs@PVP (~8 % Ru): Size = 1.3 (0.2) nm Total Atoms = 114 Core atoms = 36 Surface atoms = 78 % Surface atoms = 68 %

- 1) 100 mg de RuNPs@PVP \rightarrow 0.08 mmol Ru \rightarrow 0.054 mmol Ru_s
- Norbornane consumed = 0.4 mmol (initial norbornene) * 0.07 (% norbornane formed)*0.01 = 0.0003 mmol
- 3) Hydrides/surface atom = 0.0003/0.054 = 0.005

<u>LMP61</u> (80 °C)

Following the experimental procedure published in ACS Catalysis **2014**, *4*, 3016, a Fischer-Porter (80 mL) was filled with 100 mg of RuNPs@PVP (~ 8% Ru), pressurized with 3 bar of syngas (1:1 molar mixture of H_2 and CO) and heated at 80 °C for 24 h.

After this, we quantified the hydrides adsorbed following a previously reported procedure (*Angew. Chem. Int. Ed.* **2008**, *47*, 2074-2078). The Fischer-Porter was depressurized at 80 °C. After that, the Ru/PVP (100 mg) were re-dispersed in 10 mL of THF and reacted with 2-norbornene (37.5 mg, 0.4 mmol, 5 equiv.). The amount of norbornane formed was measured by G.C. analysis.

After 24h of vigorous stirring in a 80 ml flask, only traces of norbornane was observed by G.C, confirming that there are not hydrides adsorbed at ruthenium surface after these conditions.

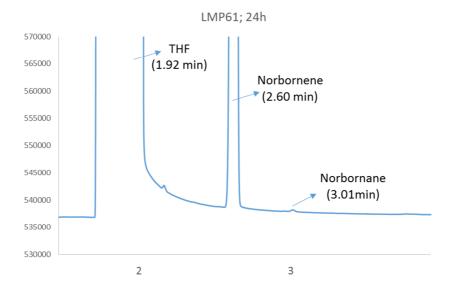


Figure S12: Gas chromatography spectrum recorded after reaction of 37.5 mg of 2-norbornene with 100 mg of RuNPs@PVP in a 80 mL Fischer-Porter obtained after 3 bar of syngas at 80 $^{\circ}$ C (1:1 molar mixture of H₂ and CO).

Compound	r.t.	area	%
THF	1.92	2840934	-
2-norbornene	2.60	17235	99.97
norbornane	3.01	6	0.03

Calculation of hydrides adsorbed on RuNPs@PVP:

RuNPs@PVP (~8 % Ru):

Size = 1.3 (0.2) nm Total Atoms = 114 Core atoms = 36 Surface atoms = 78 % Surface atoms = 68 %

- 1) 100 mg de RuNPs@PVP \rightarrow 0.08 mmol Ru \rightarrow 0.054 mmol Ru_s
- 2) Norbornane consumed = 0.4 mmol (initial norbornene) * 0.034 (% norbornane formed)*0.01 = 0.00014 mmol
- 3) Hydrides/surface atom = 0.00014/0.054 = 0.0026