Integration of DNA and Graphene Oxide for the Construction of Various Advanced Logic Circuits

Chunyang Zhou, Dali Liu, Changtong Wu, Yaqing Liu* and Erkang Wang*

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. ekwang@ciac.ac.cn, Tel: +86-431-85262003.

Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, P. R. China, yaqingliu@tust.edu.cn, Tel: +86-22-60912484.

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China.

Name	DNA Sequence (from 5' terminal to 3' terminal)
F-DNA _{FA}	AAACC AACCCAAA
F-DNA _{FS}	ATCTA TATCA ACTTA TG
F-DNA _{MG}	TTCTT TTCTATCGTA AGTAACAT
IN1	ATACTAACTACATACT GGGTTGGGTAGATAGATATACTACAA
IN2	TTGTAGTATATGTATATGAGGGGTTGGG AGTAT GTAGT TAGAT
	AGATA
IN3	TATCT ATCTA GGGTTGGG TCATA TACAT GTAGT TAGTAT
INA	ACCCAAACCCAAACCCAAACCCATAAGTTGATATCAATATAG
	AT
INB	ATCTATAACTTGATATAGAT TTTT TTTTT TTTTT TCAACTAT
	GGGTTTGGGTTTGGGTTTGGG
INC	ATCTATATATAGTTGATATC ATCTCAACTT AAAA AAAA
	AAAAAT ATATC GGGTTTGGGTTTGGGTTTGGG
INA'	CTACC TTCTA TACGAT
INB'	ATCTA TACTT AGAA
INC'	ATGTTAGATGGTAG

 Table S1 Sequences of the oligonucleotides used in this work.

Fig. S1. (A) The FAM fluorescence response of F-DNA_{FA} in the presence of different concentration of GO. (B) Comparison of FAM fluorescence signal of F1-DNA (100 nM) before and after addition of GO ($6\mu g/mL$).

When F-DNA_{FA} binding on the GO, the fluorescence intensity of FAM is significantly quenched via noncovalent π - π stacking interaction.

Fig. S2. The FAM fluorescence response of GO/F-DNA_{FA} at 519 nm with increasing the concentration of IN1 (A), IN2 (B) and IN3 (C).

The fluorescence of FAM is generally recovered and reaches a plateau with increasing the concentration of IN1 (A), IN2 (B) and IN3 (C). Here, 350 nM was used for each input.

Fig. S3. The FAM fluorescence response of F-DNA_{FA} with different concentration ratios of IN1:IN2 (A), IN1:IN3 (B) and IN2:IN3 (C).

The fluorescence of FAM is generally decreased when the concentration ratio is close to a proper value. That is because each of the two inputs can hybridize and leave the F-DNA_{FA} on the GO with the state of quenched.

Fig. S4. (A) The FAM fluorescence response of F-DNA_{FS} in the presence of different concentrations of GO. (B) Comparison of FAM fluorescence signal of F-DNA_{FS} (100 nM) before and after the addition of GO (6 μ g/mL).

When F-DNA_{FS} binding on the GO, the fluorescence intensity of FAM is significantly quenched via noncovalent π - π stacking interaction.

Fig. S5. The FAM fluorescence response of GO/ F-DNA_{FS} at 519 nm with increasing the concentration of INA (A), INB (B) and INC (C).

The fluorescence of FAM is generally recovered and reaches a plateau with increasing the concentration of INA (A), INB (B) and INC (C). Here, 350 nM was used for each input.

Fig. S6. (A) The FAM fluorescence response of F-DNA_{MG} in the presence of different concentrations of GO. (B) Comparison of FAM fluorescence signal of F-DNA_{MG} (100 nM) before and after the addition of GO (6 μ g/mL).

When F-DNA_{MG} binding on the GO, the fluorescence intensity of FAM is significantly quenched via noncovalent π - π stacking interaction.

Fig. S7. The FAM fluorescence response of GO/F-DNA_{MG} at 519 nm with increasing the concentration of INA' (A), INB' (B) and INC' (C).

The fluorescence of FAM is generally recovered and reaches a plateau with increasing the concentration of INA' (A), INB' (B) and INC' (C). Here, 350 nM was used for each input.