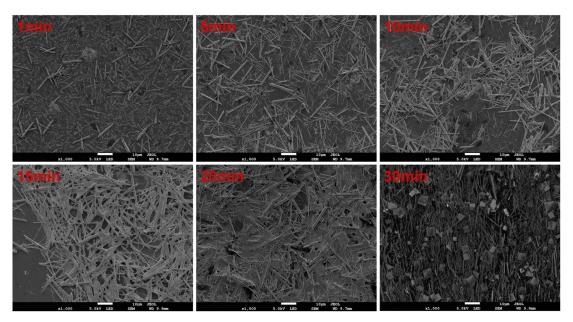
Supporting Data

All-Inorganic Perovskite CsPb(Br/I)₃ nanorods for Optoelectronic Application

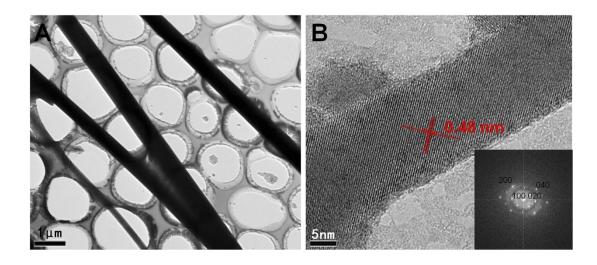
Xiaosheng Tang^{*}, ^a Zhiqiang Zu, ^a Haibing Shao, ^a Wei Hu, ^a Peihua Wangyang, ^b Miao Zhou, ^a Ming Deng, ^a Weiwei Chen, ^a Zhigang Zang, ^a Tao Zhu, ^a Junmin Xue^c

^aKey Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China

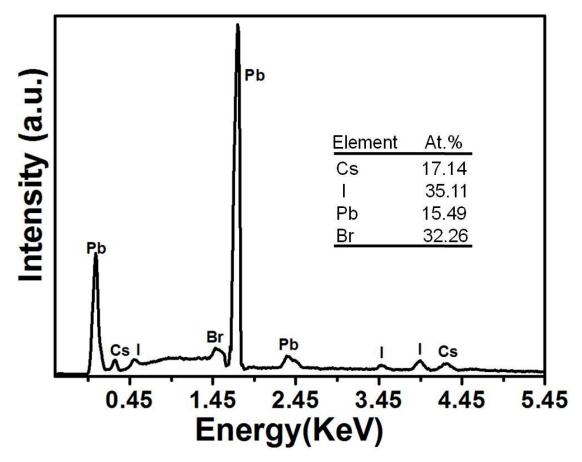
^bSichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic T

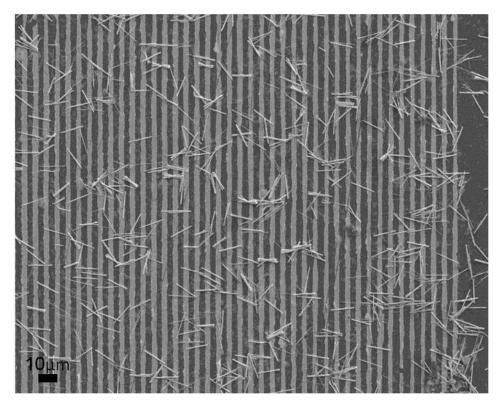

echnology, Chengdu University of Information Technology, Chengdu 610225, China ^eDepartment of Materials Science & Engineering, National University of Singapore, Singapore

Experimental details:


Chemicals: Cs_2CO_3 (99%, Adamas), octadecene (ODE, 90%, Acros), oleic acid (OA, 90%, Aldrich), PbBr₂ (99.99%, Xi'an Polymer Light Technology Core), PbI₂ (99.99% Xi'an Polymer Light Technology Core), oleylamine (OLA, Aldrich, 70%), oleylamine (99.9%, Acros). All chemicals were used as received without further purification.

Preparation of CsPb(Br/I)₃ **nanorods:** Caesium stock solution was obtained by dissolving 100 mg CsCO₃ powder in 300µl oleic acid (OA) and 3.75ml octadecene (ODE) in a 100 ml three-necked flask, the above stock solution were then heated to 120°C under N₂ for standby. 22mg PbBr₂, 55mg PbI₂, 5ml ODE were mixed in a 100 ml three-necked flask, which was placed in a heating jacket with the environment of nitrogen and then heated to 120°C with magnetic stirring, and then 800µl OA and 500µl oleylamine (OLA) were injected into the three-necked flask and then heated to 135°C to keep half an hour until the solution turned into bright yellow. Following, extracting 600µl Caesium stock solution was injected into the precursor solution quickly which containing PbBr₂ and PbI₂ when the temperature of the solution was maintained at 135°C for 1,5,10,15,20,30 minutes until the solution turned to dark red. Finally, the CsPb(Br/I)₃ nanorods were obtained. The CsPb(Br/I)₃ nanorods were obtained after several purification, and then the CsPb(Br/I)₃ nanorods were dispersed in toluene for testing.


Characterization of CsPb(Br/I)³ **nanorods:** The crystal phases of all samples were characterized by X-ray diffraction (XRD) with CuKa radiation (XRD-6100, SHIMADZU, Japan). The absorption was adopted by a Scan UV-vis spectrophotometer (UV-vis: UV-2100, Shimadzu, Japan). The photoluminescence spectroscopy were measured by a fluorescence spectrophotometer (PL: Agilent Cary Eclipse, Australia) which included a Xe lamp as an excitation source with optical filters). The transmission electron microscopy was tested by a ZEISS LIBRA 200FE microscope. The on/off photocurrent ratio of the CsPb(Br/I)³ nanorods was obtained by a source meter (Keithley 4200).


S_Figure. 1 The synthesis of CsPb(Br/I)_3 nanorods at 135 $^\circ\!\mathrm{C}$ for 1, 5, 10, 15, 20, 30 minutes.

S_Figure. 2. (A) TEM images of the $CsPb(Br/I)_3$ nanorods. (B) High resolution TEM image of $CsPb(Br/I)_3$ nanorods and the SAED of the $CsPb(Br/I)_3$ nanorods.

S_Figure. 3 EDS spectrum of the CsPb(Br/I)₃ nanorods.

S_Figure. 4 SEM image of real photodetector device which a great many nanorods which were set up between the two Au electrodes.