WILEY-VCH

Electronic Supplementary Information

Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting

Xianbo Yu^{a,c}, Shen Zhang^a, Chunyan Li^a, Chunling Zhu^b, Yujin Chen^{*a}, Peng Gao^{*b}, Lihong Qi^a, Xitian Zhang^c

^a Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, and College of Science, Harbin Engineering University, Harbin, 150001, China ^b College of Chemistry and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China

^c Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China

*Corresponding authors.

E-mail addresses: chenyujin@hrbeu.edu.cn and gaopeng@hrbeu.edu.cn.

Tel.: +086-0451-82519754, Fax: +086-0451-82519754

Experimental Section

Chemicals. Grapehene sheets with a thickness of about 0.8 nm were purchased from Nanjing XFNANO Material Tech Co., Ltd. (Nanjing City, China). Other regards were purchaged without further treatment.

Preparation of catalysts. The CoP_h/NG hybrids were synthesized as follow: The graphene sheets were treated at 700°C for 3 h under an NH₃ flow and then NG was obtained. 36 mg of NG was dispersed into 72 mL ethanol, and 200 mg of cobalt acetate was added. After sonication for 10 min, 3.6 mL distilled water and 2 mL ammonia were then added. The mixture above was sealed in a flask and kept at 80°C for 10 h under stirring. The precipitates were washed with distilled water and dried through a freeze-drying process. The obtained powder (powder A) was thermally treated at 325°C for 2 h under an Ar/H₂ flow, and then was further treated in a furnace at 200°C for 2 h under air atmosphere. After cooling to room temperature, the obtained powder denoted as powder B. The powder B was mixed with sodium hypophosphite by a weight ratio of 1 : 20, and then the mixture was annealed at 350°C for 2 h at Ar flow. The CoP_h/G hybrids were synthesized under the similar conditions except that NG was replaced with the pristine graphene. The CoP_s/NG hybrids were synthesized by direct phosphatization of powder A.

Electrochemical measurements. Electrochemical measurements were carried out with a CHI 660D electrochemical analyzer (CH Instuments, Inc., Shanghai) in a standard three-electrode system using CoP-based catalysts on carbon paper as the working electrode, a graphite rod as the counter electrode and an Ag/AgCl electrode as the reference electrode.

Carbon paper electrode: The preparation of the working electrode was described below: the catalysts were dispersed in N-methyl-2-pyrrolidone solvent containing 7.5 wt% PVDF under sonication, in which the weight ratio of the catalyst to PVDF is 8:1. Then the slurry was coated onto a piece of carbon paper. The loading density of the catalyst was around 2.5 mg cm⁻².

Glassy carbon disk electrode: 2 mg of catalyst powders was dispersed in 0.5 mL of 3:1 (volume:volume) water/ethanol mixed solvents along with 20 μ L of a Nafion solution (5 wt%), and the mixture was sonicated for 30 min. Then, 2.7 μ L of the above solution dripped onto the surface of a glassy carbon disk electrode at a catalyst loading of around 0.15 mg cm⁻². The as-prepared catalyst film was dried at room temperature .

Electrochemical measurements of the catalysts were measured in 1 M KOH solution after purging the electrolyte with N_2 gas for 30 min. Polarization curves were obtained using Linear

sweep voltammetry (LSV). The long-term stability test was carried out using chronopotentiometric measurements. All potentials measured were calibrated to RHE using the following Equation: $E_{(RHE)} = E_{(Ag/AgCl)} + 0.21 \text{ V} + 0.059 \times \text{ pH}$. All current densities presented are corrected against ohmic potential drop.

The TOF calculation. The number of active sites (*n*) was first examined employing cyclic voltammograms with phosphate buffer (pH = 7) at a scan rate of 50 mV s⁻¹. Then the number of the voltammetric charges (*Q*) could be determined after deduction of the blank value. *n* (mol) could be determined with the following equation

$$n \text{ (mol)} = Q / 2F \text{ (HER)}; n \text{ (mol)} = Q / 4F \text{ (OER)}$$

where F is Faraday constant. TOF (s^{-1}) could be calculated with the following equation

TOF
$$(s^{-1}) = I/2nF$$
 (HER); TOF $(s^{-1}) = I/4nF$ (OER)

where I(A) was the current of the polarization curve obtained by LSV measurements.

Structure characterizations. XRD data were performed on a X'Pert Pro diffractometer with Cu $K\alpha$ radiation (λ =1.5418Å). TEM measurements were carried out on a transmission electron microscope (FEI Tecnai-F20) with an accelerating voltage of 200 kV. XPS data were accuired on a X-ray photoelectron spectrometer (ESCALAB 250, Thermofisher Co.)with Mg $K\alpha$ radiation. The binding energy was calibrated with the C 1s position of contaminant carbon in the vacuum chamber of the XPS instrument (284.6 eV).

Figure S1. High-magnification TEM images of the CoP_h/NG hybrids composite.

Figure S2. XRD spectra of the powder CoP_h/NG (black), CoP_s/NG (red) and CoP_h/G (blue). The lines correspond to standard XRD patterns of CoP (pink, JCPDS card No. 29-0497).

Figure S3. XPS spectra of a) Co 2p, b) P 2p, c) N 1s, d) C 1s in the power CoP_h/NG, CoP_s/NG , CoP_h/G , respectively.

Figure S4. The polarization curve of CoP_h/NG loaded on glassy carbon disk electrode toward OER in 1.0 M KOH with a scan rate of 10 mV s⁻¹.

Figure S5. Stablity test for the CoP_h/NG hybirds by CV scanning for 1000 cycles in 1.0 M KOH solution at a scan rate of 50 mV s⁻¹.

Figure S6. XPS spectra of Co 2p and P 2p in CoP_h/NG electrodes. a, c) The as-prepared CoP_h/NG electrode film without test. b, d) The as-prepared electrode after OER process for 3 h.

Figure S7 The CV curve of CoP_h/NG electrodes at a scan rate of 50 mV s⁻¹.

Figure S8. The polarization curve of CoP_h/NG loaded on glassy carbon disk electrode toward HER in 1.0 M KOH with a scan rate of 10 mV s⁻¹.

Figure S9. XPS spectra of Co 2p and P 2p in CoP_h/NG electrodes. a, c) The as-prepared CoP_h/NG electrode film without test. b, d) The as-prepared electrode after HER process for 3 h.

Figure S10. a) High-magnification TEM, and b) HRTEM images of the CoP_s/NG hybrids composite. The inset of a) shows the corresponding SAED pattern.

Figure S11. a) High-magnification TEM, and b) HRTEM images of the CoP_h/G hybrids composite. The inset of a) shows the corresponding SAED pattern.

Figure S12. Calculated turnover frequencies for the CoP_h/NG , CoP_s/NG and CoP_h/G electrode films at pH = 14 for a) HER and b) OER process.

Figure S13. Nyquist plots for CoP_h/NG , CoP_s/NG and CoP_h/G electrode a) for HER under the overpotentials of 200 mV and b) for OER under the overpotentials of 306 mV.

Figure S14. Cyclic voltammograms in the region of 0.3-0.4 V vs. RHE for a) CoP_h/NG, c) CoP_s/NG and e) CoP_h/G electrodes. The differences in current density ($\Delta J/2$) at 0.35 V vs.

RHE plotted against scan rate fitted to a linear regression allows for the estimation of C_{dl} for b) CoP_h/NG , d) CoP_s/NG and f) CoP_h/G electrodes.

Figure S15. Time-dependent current density curve for CoP_h/NG – CoP_h/NG electrodes are tested under the cell voltage at 1.75 V over 20 h.

Figure S16. Time-dependent current density curve for $CoP_h/NG-CoP_h/NG$ electrodes are tested under the cell voltage at 1.42 V over 10 h.

Figure S17. Stablity test for the $CoP_h/NG-CoP_h/NG$ electrodes by CV scanning for 1000 cycles in 1.0 M KOH solution at a scan rate of 50 mV s⁻¹.

Table S1. Comparison of the OER activities of the CoP_h/NG , CoP_s/NG and CoP_h/G catalysts in 1.0 M KOH with recently published results.

Catalysts	Tafel slope (mV dec ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Overpotential at 100 mA cm ⁻² (mV)	Electrolyte	Refs.
Cobalt- Phosphorous- Derived Films	47	345	413	1M KOH	Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
Co phosphide/phospha te thin film	65	~290	_	1M KOH	<i>Adv. Mater.</i> , 2015, 27, 3175-3180.
Co-P/ N-doped carbon matrices (Loading 0.283mg cm ⁻²)	_	354	~410	1M KOH	Chem. Mater., 2015, 27, 7636-7642.
Co-P/ N-doped carbon matrices (Loading 1.0mg cm ⁻²)	52	319	~ 400	1М КОН	Chem. Mater., 2015, 27, 7636-7642.
Ni ₂ P nanoparticles	59	290	_	1M KOH	<i>Energy Environ. Sci.</i> , 2015, 8, 2347-2351
Co ₉ S ₈ @MoS ₂ /carb on nanofibers	61	430	_	1M KOH	<i>Adv. Mater.</i> , 2015, 27, 4752-4759
Reduced Mesoporous Co ₃ O ₄ Nanowires	72	~ 400	_	1M KOH	Adv. Energy Mater., 2014, 4, 1400696
CoP nanoparticles/Carb on	99	340	_	1M KOH	ACS Catal., 2015, 5, 6874-6878
CoP nanorods/Carbon	71	320	_	1M KOH	ACS Catal., 2015, 5, 6874-6878
Co ₃ O ₄ Nanoflakes	59	380	_	1М КОН	ACS Appl. Mater. Interfaces, 2015, 7, 3306–3313
Nickel-Cobalt Binary Oxide (10 at% Co)	44	325	_	1M NaOH	ACS Nano, 2014, 8, 9518-9523
Nickel-Cobalt Binary Oxide (40 at% Co)	39	333	_	1M NaOH	ACS Nano, 2014, 8, 9518-9523
CoP _h /NG CoP _s /NG CoP _h /G	54 68 98	262 289 292	343 369 409	1M KOH	This work

Table S2. Comparison of the HER activities of the CoP_h/NG , CoP_s/NG and CoP_h/G catalysts in 1.0 M KOH with recently published results.

Catalysts	Tafel slope (mV dec ⁻¹)	j ₀ (μA cm ⁻²)	η ₁₀ (mV)	η ₁₀₀ (mV ⁾	Electrolyte	Refs.
Cobalt Phosphide Nanowire Arrays	129	—	209	~510	1M KOH	J. Am. Chem. Soc., 2014, 136, 7587-7590
Cobalt- Phosphorous- Derived Films	42	_	94	158	1М КОН	Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
Co phosphide/phosphate thin film	—	—	~360	—	1M KOH	<i>Adv. Mater.</i> , 2015, 27, 3175- 3180.
Co-P/ N-doped carbon matrices (Loading 0.283mg cm ⁻²)	_	_	191	277	1М КОН	Chem. Mater., 2015, 27, 7636- 7642
Co-P/ N-doped carbon matrices (Loading 1.0mg cm ⁻ ²)	51	_	154	234	1M KOH	Chem. Mater., 2015, 27, 7636- 7642
CoP/Carbon Nanotubes	54	130	122	_	0.5M H ₂ SO ₄	Angew. Chem. Int. Ed., 2014, 53, 6710-6714
CoP/Ti Plate	43	—	90	146	0.5M H ₂ SO ₄	<i>Chem. Mater.</i> , 2014, 26, 4326- 4329
Cobalt phosphide nanorods	71 —	_	134 ~150	_	0.5M H ₂ SO ₄ 1M KOH	Nano Energy, 2014, 9, 373- 382
CoP/RGO	104.8	40	~260	—	0.5M H ₂ SO ₄	J. Mater. Chem. A, 2015,3, 5337- 5343
CoP nanowires CoP nanosheets CoP nanoparticles	54 61 87	160 32 54	110 164 221	 	0.5M H ₂ SO ₄	J. Mater. Chem. A, 2014, 2, 14634-14640
CoP nanotubes	60	—	129	—	0.5M H ₂ SO ₄	J. Mater. Chem. A, 2014, 2, 14812-14816
CoP/Nitrogen-Doped Carbon	42	160	91	—	0.5M H ₂ SO ₄	ChemCatChem 2015, 7, 1920- 1925
CoP _h /NG CoP _s /NG CoP _h /G	57 68 78	416 262 347	83 109 109	140 190 —	1М КОН	This work

	N-O	Graphitic	Pyrrolic	Co-N	Pyridinic
	402.8 eV	401.7 eV	400.4 eV	399.1 eV	398.3 eV
CoP _h /NG	0.2	1.2	0.6	0.7	0.8
CoP _s /NG	0.38	1.2	0.55	0.5	0.55
CoP _h /G	1.75	0.25	0	0	0

Table S3. Contents of various types of N in CoP_h/NG , CoP_s/NG and CoP_h/G catalysts.

Table S4. Comparison of R_{ct} and R_s among the CoP_h/NG, CoP_s/NG and CoP_h/G catalysts for HER and OER under the overpotentials of -200 mV and 306 mV,respectively. Unit: Ω cm⁻²

$R\left(\Omega\ { m cm}^{-2} ight)$	Overpotential	-200 mV(HER)	306 mV (OER)
	CoP _h /NG	9.9	5.7
$R_{\rm ct} (\Omega \ {\rm cm}^{-2})$	CoP _s /NG	10.2	6.9
	CoP _h /G	12.4	8.8
	CoP _h /NG	1.648	1.218
$R_{\rm s}$ (Ω cm ⁻²)	CoP _s /NG	1.264	1.242
	CoP _h /G	1.544	1.238

Catalysts	Voltage at 10 mA cm ⁻² (V)	Electrolyte	Refs.
CoP nanoparticles/Carbon	1.587	1M KOH	ACS Catal., 2015, 5, 6874-6878
Co-P/ N-doped carbon matrices	~1.7	1M KOH	<i>Chem. Mater.</i> , 2015, 27, 7636-7642
NiSe Nanowire/ Nickel Foam	1.63	1M KOH	Angew. Chem. Int. Ed., 2015, 54, 9351- 9355
NiCo ₂ S ₄ nanowires array	1.68	1М КОН	Nanoscale, 2015, 7, 15122-15126
CoP _h /NG CoP _s /NG CoP _b /G	1.58 1.635 1.651	1M KOH	This work

Table S5. Comparison of the overall water splitting for $CoP_h/NG-CoP_h/NG$, $CoP_s/NG-CoP_h/G$ in 1.0 M KOH with recently published results.