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Structural characterization of freestanding monolayered membranes of 7 nm 

dodecanethiol coated gold nanoparticles 

 

 

Fig S1: (a) Wide and (b) close-up views by transmission electron microscopy (TEM) of a freestanding 

monolayered membrane of 7 nm dodecanethiol coated gold nanoparticles (NPs) organized with a 

hexagonal close-packed structure, (c) TEM size distribution of the dodecanethiol coated gold NPs.  

 

 

 

 

Fig S2: (a) Atomic force microscopy (AFM) topography image in PeakForce tapping and (b) 

corresponding profile (along the white dashed line on (a)) of a scratched 7 nm gold NP membrane 

deposited on a plain SiO2 substrate.  
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Mechanical characterization of a 5 μm wide freestanding monolayered membrane 

of 7 nm dodecanethiol coated gold nanoparticles 

 

 

 

 

 

Fig S3: Elastic force-displacement curve on a 5 μm wide freestanding gold NP monolayered 

membrane, performed by AFM force spectroscopy. This curve was obtained by averaging ten 

measurements carried out in the center of the same membrane. The continuous yellow line shows the 

fitting force-displacement curve obtained from finite element modeling with optimized membrane 

mechanical parameters: E=1.2 ± 0.4 GPa and σ0=7 ± 1 MPa.  
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Discussion on the charging energy model for Arrhenius type temperature dependence  

 

 

Our results show that the electronic transport within the NP membranes is of Arrhenius type (γ=1). In this 

regime, the electrical resistance of NP arrays is often described by a simple thermally activated behavior 

that gives the subsequent zero-voltage resistance:  

𝑅 ∝ exp [(
𝐸𝑎

𝑘𝑇
)]          (1) 

where Ea, the activation energy, is often considered in the literature to represent a good estimation of the 

Coulomb charging energy EC that is related to the system capacitance C by the relation EC=e2/2C. It is 

then possible to relate the experimental R(T) measurements with the properties of the nanoparticle 

assembly and to their environment. For a nanoparticle in an array of nanoparticles, this capacitance C is 

strongly influenced by the particle radius r, the interparticle distance l,  the dielectric constant of the 

surroundings 𝜖𝑟, and by the number of nearest-neighbors N. However, in the literature, studies which 

have examined the effect of the interparticle distance on the EC value, and therefore C, remain 

controversial since some report a small influence of the length of the ligand1 while others infer a very 

strong influence.2 These differences can arise from the models which are used to calculate the NP 

charging energy in assemblies.  

Most experiments consider the capacitance of an isolated sphere:3–5 

𝐶 = 4π𝜖0𝜖𝑟𝑟         (2) 

where r is the radius of the NP, 𝜖0 is the vacuum permittivity, and 𝜖𝑟 is the relative dielectric constant of 

the matrix.  

Refined models were then proposed by Abeles et al. by taking the interparticle distance l into account:6 

𝐶 = 4π𝜖0𝜖𝑟𝑟 (
𝑟+𝑙

𝑙
)          (3) 

and by Beecher et al.7,8 

𝐶 = 2𝑁π𝜖0𝜖𝑟𝑟. 𝑙𝑛 (1 +
2𝑟

𝑙
)        (4) 

where N is the number of NPs surrounding a given particle (e.g. N = 12 and 6 for a 3D and 2D dense fcc 

packing respectively) and l is the interparticle distance. 

 

Leroy and Cordan proposed a different model based on the charge image method.9,10 This approach 

describes the capacitance between two junctions by a capacitance matrix taking into account the influence 

capacitance formed by two nanospheres. Such a system of two conductors is then characterized from an 

electrostatically point of view by the following capacitance matrix: 

(
𝐶1,1 −𝐶1,2

−𝐶2,1 𝐶2,2
)        (5) 

where C2,1=C1,2 and Ci,i represents the capacity of an isolated sphere.  

 

For nanospheres with equal diameter d and separated by the l distance, the junction capacitance 𝐶𝑝 

between two NPs is given by the equation:  

𝐶p = 4π𝜖0𝜖𝑟𝑟 sinh (acosh (1 +
𝑙

𝑑
)) × ∑ [sinh (2𝑛 acosh (1 +

𝑙

𝑑
))]

−1
∞
n=1         (6) 
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The total system capacitance C can then be obtained by the 𝐶 =  𝑁𝐶p where N is the number of 

surrounding nanoparticles. In equations (2-6), many parameters such as d, l, 𝜖𝑟 … allow adjusting the 

experimental values to these different models, that is probably why the literature is so controversial. It is 

then necessary to understand where these models come from and what their limits are. 

The model of the isolated sphere only takes into account the self-capacitance of the nanoparticles and 

ignores the capacitance between neighboring nanoparticles, leading to an overestimated value of the 

Coulomb charging energy. This model cannot clearly represent our dense nanoparticle assemblies. 

The Abeles model assumes a metal nanoparticle surrounded by a layer of a dielectric material with the 

thickness l and another infinite concentric metal layer, which overestimates the contribution of the mutual 

capacitance between neighboring nanoparticles and thus an underestimated Coulomb charging energy. 

Beecher’s model is based on experiments derived from a nanosphere and a STM tip whose diameter can 

be considered as infinite with respect to the nanoparticle radius.7,11 Beecher’s expression hence represents 

the interaction capacity between an infinite plane and a nanosphere, which is not realistic to describe our 

nanoparticle assemblies. More importantly, this model lacks of self-consistency because the capacitance 

tends to 0 if the interparticle distance grows and tends to infinity, which is not realistic since it would tend 

to the capacity value of the isolated sphere. 

Thus, the only self-consistent model is the Leroy-Cordan’s model which is the only one to take into 

account the mutual interactions between spheres and respect the self-capacity condition: 

lim
𝑙→∞

𝐶i,i = 4π𝜖0𝜖𝑟𝑟         (7) 

where the distance l between the nanospheres becomes very large. In our case, the Leroy-Cordan’s model 

leads to an Ec value of 25 meV which is in very good agreement with values determined experimentally 

when considering an average Au NP diameter d = 2r = 7.1 nm, an interparticle distance l = 1.3 nm as 

deduced from SEM images (Fig. 2c and 2d), 𝜖𝑟 = 2.3 typical for alkanethiol self-assembled monolayers 

(𝜖𝑟 = 2.7 ± 0.3)12 and N = 6 for a monolayered hexagonal array. 
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Numerical simulation of the strain-induced resistance variations in freestanding 

nanoparticle membranes 

 

The electronic conduction within the freestanding monolayered NP membranes was modelled using a 

home-made routine on Scilab. A 5 µm × 5 μm hexagonally-packed 2D array of 7.1 nm NPs separated by 

an interparticle distance l=1.3 nm at zero strain, was contacted between two electrodes: one connected to 

the center of the array and polarized at 1 V and one connected to the ground at the edge of the NP array. 

Each NP i in the array was defined by a given position (xi , yi , zi) and considered as a node of a network 

of resistors Rij (Fig. S4).  

 

 
 

Fig. S4: From left to right: Schematic of a 5 µm x 5 µm monolayered hexagonal array of 7.1 nm Au NPs 

separated by an interparticle distance of 1.3 nm at rest. Inside the circular membrane area, NPs depicted 

as pink circles underwent deformation while outside the membrane, NPs depicted by green circles were 

fixed. The NP array was contacted in the center and at the lower edge of the membrane by two electrodes 

to mimic the conductive AFM experiments. An equivalent network of resistors was built upon the 

monolayered hexagonal NP array located inside the blue-colored area and used for the simulation of the 

electrical current under 1 V polarization and the strain-induced resistance variations. 

 

The electrical resistance 𝑅𝑖𝑗  between the nodes i and j was computed following the simple equation          

𝑅𝑖𝑗 ∝ 𝑒𝛽𝑙𝑖𝑗, where β is the tunnel decay constant and lij is the edge-to-edge interparticle distance between 

the NPs i and j. This simplified equation is valid since we were only concerned with the relative 

variations of the resistance and the contribution from the strain-induced variations of the charging energy 

Ec is negligible. The local displacement field of the membranes under point-loading as determined by 

FEA simulations (see Inset of Fig. 3b of the manuscript) was used to obtain the change in the interparticle 

length lij between NPs. To increase the computation speed, calculations were performed in a delimited 

area of the resistor network indicated as the blue-colored area in Fig. S4, enclosed between the center of 

the NP membrane and the ground electrode. The β value was fixed at 5 nm−1 to match the total simulated 

strain-induced resistance variation with that of the freestanding NP membranes experimentally measured 

by AFM-based experiments. The voltage at each node of the NP assembly was computed by resolving the 

equation [I] = [G][V] where V was the vector representing the voltage at each node, I the injected current 
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vector with I i=0 = 1 and I i≠0 = 0 and G the conductance matrix. The non-diagonal term Gij of the matrix G 

was the opposite of the conductance between nodes i and j, and the diagonal term Gii is the sum of all 

conductance values of the resistors connected to node i. The macroscopic resistance R of the whole NP 

assembly was then computed. The result is a value of the relative resistance of the NP membrane 

contacted by two external electrodes. The corresponding electrical current and local strain are shown in 

Fig. S5 for a point-load actuation of 21 nN in the center of the NP membrane. They are both maximum in 

the center of the membrane and drop toward the ground electrode. 

 

 
 

Fig. S5: Mappings of the simulated (a) normalized electrical current and (b) local strain in a 5 µm wide 

hexagonally packed NP membrane polarized at 1 V and under a point-load actuation of 21 nN. 
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