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1 Conservation equations for the van der Waals
model

The natural order parameter for a liquid-vapor phase transition is the molecular
density, and we shall focus below on the evolution of the density profile ρ(r, t),
where r is the radial variable and t is time. The density field, the velocity field
v(r, t) and the temperature field T (r, t) follow the three conservation equations
(mass, momentum and energy conservation):

∂ρ

∂t
+ ∇.(ρv) = 0, (1)

mρ

(
∂v

∂t
+ v.∇v

)
= −∇. (P −D) , (2)

mρcv

(
∂T

∂t
+ v.∇T

)
= −l∇.v + ∇.(λ∇T ) + D : ∇v + φbδ(~r − ~Rb), (3)

where m is the mass of a water molecule, cv is the fluid specific heat, l =
T (∂P/∂T )ρ is the Clapeyron coefficient (P is pressure) and λ the thermal con-
ductivity. The two tensors P and D are the pressure tensor and the viscous
stress tensor respectively. The last term in the energy equation eq. 3 is a bal-
listic heat flux when a bubble is present, and ~Rb denotes the location of the
bubble surface.

To account for the liquid-vapor phase transition we use a density functional
approach based on the van der Waals bulk free energy with an additional square
gradient term to account for the finite thickness of the interface at the nanometer
scale, and to include surface tension effects in the model [1, 2]. The resulting
pressure tensor is a function of the local density in the fluid, ρ(r, t) and its
gradients:

Pαβ =
[
PVdW − wρ∆ρ+

w

2
(∇ρ)2

]
δαβ + w∂αρ∂βρ. (4)
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Mass density cv λ l η = 3µ/5
kg/m3 kJ/(kg.K) W/(m.K) Pa Pa.s
997 4.13 0.606 5.4×108 8.98×10−4

2.22 10−2 1.44 0.019 6881 9.9×10−6

Table 1: Parameter values used in the model. The top line corresponds to the
liquid phase, the bottom to the vapor phase.

Here, PV dW is the pressure obtained from the van der Waals theory:

PVdW =
ρkBT

1− ρb
− aρ2.

The parameter w in (4) fixes the interface thickness and the surface tension.
This parameter has been adjusted to match the surface tension of water at
room temperature (T = 297 K). δαβ is the Kronecker symbol, and ∂α is a
derivative with respect to the spatial coordinate in the direction α. ∆ is the
Laplace operator. The two van der Waals parameters a and b have been chosen
so that the density of the liquid phase at T = 297 K corresponds to the density
of water, and the critical temperature is Tc = 647.3 K. With these ingredients,
using a linear variation of cv, l, λ, the shear and bulk viscosities η and µ across
the liquid-vapor interface (written for η only below):

η(r) = ηvap +
ρ(r)− ρvap

ρliq − ρvap
(ηliq − ηvap)

with the values in the liquid and vapor phases given in table 1.
Here, we show that the term −l~∇ · ~v is responsible for the liquid/vapor

phase change. To do so, let us consider a volume of liquid and assume that
we are working at constant temperature, and at the corresponding saturation
pressure Psat(T ). Under these conditions, the change of enthalpy per mole of
fluid corresponding to the liquid/vapor transition is :

∆H =

∫ tvap

t=0

∫
V

+l~∇ · ~vd~rdt (5)

where we assumed that we started at time t = 0 the vaporization process,
and tvap is the time necessary to vaporize a mole of vapor. Using the mass
conservation equation eq. 1, the enthalpy change may be rewritten :

∆H =

∫ tvap

t=0

∫
V
− l
ρ

dρ

dt
d~rdt (6)

and if we further assume that the fluid properties are homogeneous on the local
scale considered, V = Na/ρ, Na being the Avogadro number, the change of
enthalpy writes :

∆H =

∫ ρv

ρl

− l

ρ2
dρ = NaT

dPsat

dT
(vvap − vliq) = L (7)

2



which is exactly the Clausius-Clapeyron relation [3], with vliq and vvap the liquid
and vapor specific volumes, and we have used the definition of the coefficient l :
l = T (dPsat

dT )ρ.
The three equations (1), (2) and (3) are solved in the radial direction using

a finite difference scheme for the spatial derivatives, and an Euler scheme for
the time evolution. In addition, we implemented perfectly matched layers at the
boundaries of the simulation cell, to avoid any spurious reflection of the acoustic
wave generated by vaporization.

The choice of a continuum description for the fluid is dictated by the gen-
eration of a pressure wave due to the heat shock, that travels away from the
nanoparticle in unbounded geometries, but may lead to spurious reflections
and induce a premature bubble collapse in a finite geometry. To discard these
boundary problems, we consider a quite large spherical system of radius 390 nm,
centered on the nanoparticle of radius 10nm to 30 nm, and use at the bound-
aries of the system a Perfectly Matched Layers scheme to prevent any reflection
of the pressure wave [4, 5]. Relying on the spherical geometry of the system,
we restrict the study to spherosymmetrical solutions that allow a dimensional
reduction of the problem to a 1D situation. This assumption is consistent with
the metallic nature of the GNP where fast thermal transfer in the nanoparti-
cle induces a homogeneous temperature field inside the particle, and with the
spinodal nature of the vapor production that should occur at the same time
at any location on the surface of the nanoparticle. We finally mention that
the spherical geometry of the bubble is confirmed by molecular dynamics (MD)
simulations [6], although it is not an assumption of MD.

2 Estimation of the dimensionless coefficient α

We discuss here the kinetic theory model to estimate the coefficient α, which
appears in the expression of the ballistic flux φb in eq. 3. To estimate α, we
use kinetic theory for a vapor phase between two boundaries, (the GNP surface
at temperature Tnp and the bubble surface in contact with the liquid phase at
temperature TG), see fig. 1. This simple model assumes that the vapor molecules
are evaporated at the surface of the bubble, with a Boltzmann distribution of
the velocities corresponding to the temperature TG, hit the GNP surface and
are reflected with a Boltzmann distribution corresponding to Tnp.

For a slab geometry, as depicted in Fig. 1 a), a simple calculation leads to
the expression of the average flux φslab:

φslab = ρb

√
(2kB)3

πm

√
TnpTG√

Tnp +
√
TG

(Tnp − TG) ,

with ρb the bulk density of the vapor phase. To arrive to this latter expres-
sion, it is assumed that all the molecules travelling from the GNP to the liquid
vapor interface have been emitted with a temperature Tnp, and all the parti-
cles travelling in the opposite direction have been evaporated with TG. This is
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Figure 1: Sketch of the system used for the kinetic theory estimation of the
accommodation coefficient. Figure a) is for a slab geometry while b) corresponds
to the nanoparticle system.

not stricly speaking exact, because the two interfaces (GNP and Bubble) can
produce specular reflections, where the particule is reflected with no change of
kinetic energy. However, the probability of such an event is rather small [7].
Following the strategy presented in [8], it is possible to account for this effect by
introducing an evaporation fraction αevap that has been estimated in molecular
simulations [9] to be on the order of αevap ' 0.35.

Moreover, it is possible to take into account the spherical geometry relevant
to nanobubbles by considering that only the molecules evaporated at the liquid
vapor interface having a direction inside a cone with an angle β0 (see Fig. 1 b))
can reach the GNP, so that the energy flux at the GNP surface is given by:

φ =
αevapρb√

πm

√
(2kB)3TnpTG (Tnp − TG)

(1 + cosβ0)
√
Tnp + (1− cosβ0)

√
TG

.

Comparison with eq. 3 in the main text leads to:

α = αevapαgeo
ρb

ρs
,

with the following expression for αgeo:

αgeo ≡
2√
π

√
TnpTG (Tnp − TG)

(
T

3/2
np − T 3/2

G

)−1
(1 + cosβ0)

√
Tnp + (1− cosβ0)

√
TG

,

that depends on Tnp and on the bubble size through the angle β0 (TG is room
temperature). In practical conditions, the coefficient αgeo is found to vary slowly
around 0.1 − 0.2 (see Fig.2 and the text below). The GNP radius is chosen to
match the experiments in [11] (Rnp = 30 nm) that we shall consider to compare
with our results. Finally, the prefactor ρb/ρs can be evaluated from the density
profiles (see for instance Fig. 2 in the main text). For a contact angle θ = 50◦
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Figure 2: Variation of αgeo with the GNP temperature for two extreme bubble
sizes : RG = Rnp(no bubble) and RG = 10Rnp. The temperature range exper-
imentaly used is indicated by the vertical dashed lines and have been obtained
from [10].

we obtain a fraction ρb/ρs on the order of 1/16. Hence, the range of values that
we obtain for α covers the interval 2.2 10−3- 4.4 10−3.

In Fig. 2 we plot the variations of αgeo with Tnp by considering two limiting
cases, β0 = π/2 (vanishingly small bubble) and β0 = 0.1 rad (bubble 10 times
larger than the GNP). From Fig. 2 we conclude that the temperature of the
particle gives values of αgeo smaller than 1. We consider GNPs heated to very
high temperatures [10], and the coefficient αgeo is found to vary slowly around
0.1.
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