Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Supporting Information:

Ultrastable BSA-capped gold nanoclusters with polymer-like shielding layer against reactive oxygen species in living cells

Wenjuan Zhou,^a Yuqing Cao,^a Dandan Sui,^a Weijiang Guan,^a Chao Lu,^{*a} and Jianping Xie^b

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,

Beijing 100029, China

^bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260

Fig. S1 Fluorescence spectra of the BSA-AuNCs, DHLA-AuNCs, and the as-prepared BSA-*p*-AuNCs. Inset: photograph of (a) BSA-AuNCs; (b) DHLA-AuNCs; (c) as-prepared BSA-*p*-AuNCs under 365 nm UV light.

Fig. S2 Fluorescence decays for (A) donor (BSA-AuNCs) and (B) acceptor (DHLA-AuNCs) in the precursors and the as-prepared BSA-*p*-AuNCs.

Fig. S3 MALDI-TOF MS spectra of (A) free BSA, (B) DHLA-AuNCs, (C) BSA-AuNCs, and (D) asprepared BSA-*p*-AuNCs.

Fig. S4 DLS measurements for (A) free BSA, (B) DHLA-AuNCs, (C) BSA-AuNCs, and (D) as-prepared BSA-*p*-AuNCs.

Fig. S5 HRTEM images of (A) DHLA-AuNC precursors, (B) BSA-AuNC precursors, and (C) asprepared BSA-*p*-AuNCs.

Fig. S6 CD spectra of BSA in different samples.

Fig. S7 Stability of red-emitting (A) BSA-AuNCs and (B) DHLA-linked BSA-AuNCs in the presence of H_2O_2 (0, 0.1, 1.0, 5.0, 10.0 mM). The concentration of clusters was 20 μ M, and the reaction time was 10 min.

Fig. S8 XPS spectra showing the binding energy of Au 4f of (A) the as-prepared BSA-*p*-AuNCs and (B) that exposed to $10 \text{ mM H}_2\text{O}_2$.

Fig. S9 (A) Fluorescence spectra of the DHLA-AuNCs and the BSA-adsorbed DHLA-AuNCs (BAS@DHLA-AuNCs). (B) Stability of the BAS@DHLA-AuNCs exposed to various concentrations of H_2O_2 .

Fig. S10 Fluorescence spectra of (A) BSA-AuNC precursors and (B) DHLA-AuNC precursors in the presence of trypsin (0, 0.01, 0.1, 1.0, 10.0, 100 μg/mL).

Fig. S11 MALDI-TOF MS spectra of (A) free trypsin, (B) as-prepared BSA-p-AuNCs treated with trypsin.

Fig. S12 The influence of the pH in the fluorescence of BSA-*p*-AuNCs.

Fig. S13 Cell viability of HeLa cells as assessed by MTT assay for cells exposed to the as-prepared BSA*p*-AuNCs at various concentrations for 12 h.

Fig. S14 Confocal fluorescence microscopy images of HeLa cells: (A) incubated with 1 μ M red-emitting BSA-AuNCs for 6 h at 37 °C; (B) incubated with 1 μ M red-emitting BSA-AuNCs for 6 h at 37 °C with 1 mM H₂O₂ added for the final 10 min. Scale bar, 40 μ m.

Species	$ au_1$	$ au_2$	$ au_3$	B ₁ (%)	B ₂ (%)	$B_{3}\left(\%\right)$	χ^2	τ
DHLA-AuNCs	0.358 µs	1.559 μs	3.383 µs	9.55	61.26	29.19	1.014	1.977 μs
BSA-AuNCs	0.675 ns	2.579 ns	8.010 ns	36.46	39.15	24.38	1.081	3.209 ns
BSA-p-AuNCs (donor)	0.350 ns	1.499 ns	4.567 ns	44.67	35.71	19.62	1.078	1.588 ns
BSA-p-AuNCs (acceptor)	0.400 µs	1.722 μs	3.756 µs	5.98	47.43	46.59	1.014	2.591 μs

 Table S1 Time resolved fluorescence data for DHLA-AuNCs, BSA-AuNCs, and as-prepared BSA-p-AuNCs.

 AuNCs.