Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Supporting information

High performance flexible all solid state supercapacitor based on MnO_2 spheres coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

Jian Zhi^{a,b*}, Oliver Reiser^a, Youfu Wang^b, Aiguo Hu^b.

^aInstitute of Organic Chemistry, University of Regensburg, Universitätsstr.31,93053 Regensburg, Germany

^bShanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China Email: jian.zhi@outlook.com

Calculation

If the capacitances of the two electrodes, i.e. positive and negative, can be expressed as C_p and C_n , respectively, the overall capacitance (C_T) of the entire cell can be expressed as eqn (1):

$$\frac{1}{c_T} = \frac{1}{c_p} + \frac{1}{c_n}$$
 (1)

In a symmetrical supercapacitor, $C_p = C_n = C_0$, where C_0 represents the per-electrode capacitance and in this study represents the capacitance of one electrode. So the relationship between C_T and C_0 should be as eqn (2):

$$C_0 = 2C_T = \frac{2I(t - t_{OMC})}{V} \qquad (2)$$

where I, t and V are charged current, t is the discharge time, t_{OMC} is the discharge time of blank OMC membrane on Nickel foam. V is the voltage drop upon discharging (excluding IR drop). As a result, the per-electrode specific capacitance (C_{s0}) and volumetric capacitance (C_{v0}) of MnO₂-MNC electrode is shown in eqn (3) and eqn (4):

$$C_{S0} = \frac{C_0}{m_0} = \frac{2I(t - t_{OMC})}{m_0 V} = \frac{4I(t - t_{OMC})}{m_T V} = 4C_{S-cell}$$
 (3)

$$C_{v0} = \frac{C_0}{v_0} = \frac{2I(t - t_{OMC})}{v_0 V} = \frac{4I(t - t_{OMC})}{v_T V} = 4C_{v-cell}$$
 (4)

Where m_0 is the mass of active materials in one electrode, m_T represents the total mass of active materials in the whole cell, in which $m_T=2m_0$. $C_{s\text{-cell}}$ is the specific capacity of the whole cell. V_0 is the volume of one electrode (about 0.08 cm³). Considering the very low thickness of separator (Celgard 3501, about 50 μ m), the total volume of the device $v_t\approx 2v_0$. $C_{v\text{-cell}}$ is the volumetric capacitance of the whole device.

The specific energy (E_s) and power densities (P_s) of this supercapacitor can be expressed as eqn (5) and (6):²

$$E_S = \frac{1}{2} C_{s-cell} V^2 = \frac{1}{8} C_{s0} V^2$$
 (5)

$$P_{S} = \frac{E_{S}}{t} \tag{6}$$

The corresponding volumetric energy and power density are calculated through eqn (7) and (8):

$$E_{v} = \frac{1}{2}C_{v-cell}V^{2} = \frac{1}{8}C_{v0}V^{2}$$
 (7)

$$P_{v} = \frac{E_{v}}{t} \tag{8}$$

Measurement of ionic conductivity

Ionic conductivity of PVA-BMIMCl-Li₂SO₄ gel in the supercapacitor is determined from impedance spectrum. The sample is sandwiched between two nickel foam sheets in this measurement. The ionic conductivity σ (mS cm⁻¹) of gel is calculated by the following equation $\sigma = L/(R \times S) \times 1000$ (9)

where L (cm) is the distance between the two nickel foam sheets, $R(\Omega)$ is the bulk resistance, and S (cm²) is the contact area of the gel and nickel foam sheets during the experiment.

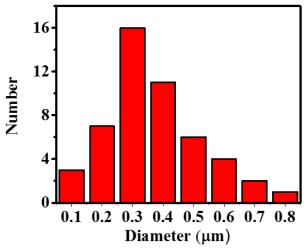
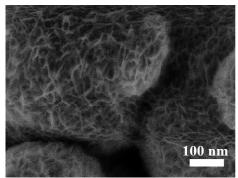



Figure S1. Histograms of diameters for 50 MnO₂ spherical particles.

Figure S2. High-magnification SEM image of MnO₂ spheres.

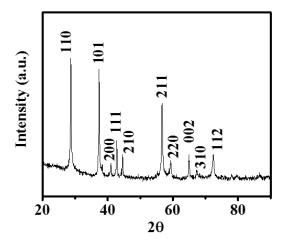
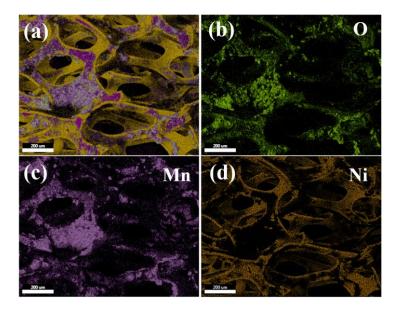
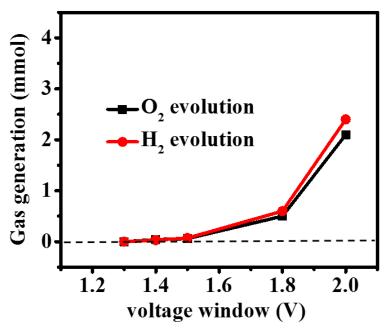
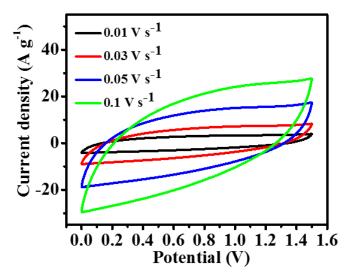
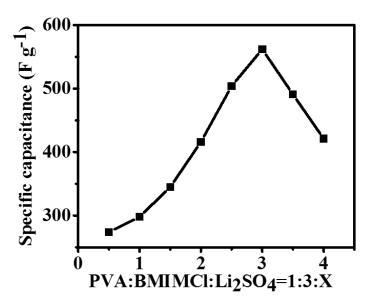
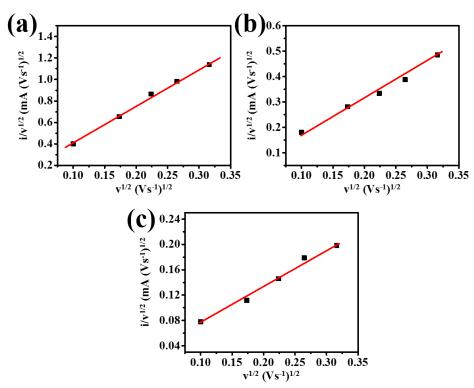




Figure S3. XRD patterns of MnO₂ spherical particles.

Figure S4. EDX maps of MnO₂-MNC composites: (a) overlapping figures;(b-d) O, Mn and Ni EDX maps.

Figure S5. Threshold voltage of water splitting. Determined by H_2 and O_2 accumulation (measured by gas chromatography) in sealed MnO₂-MNC symmetric cell in PVA-BMIMCl-Li₂SO₄ over 24 h under charge-discharge at 1 Ag^{-1} .

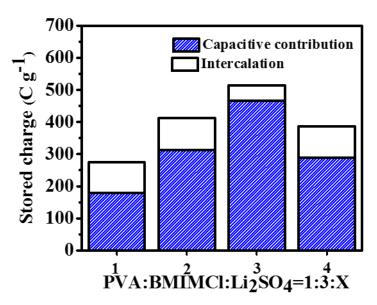

Figure S6. CV curves of MnO₂-MNC symmetrical supercapacitor in different scan rates.

Figure S7. Per-electrode specific capacitance of MnO₂-MNC symmetrical supercapacitor with different gel components.

Figure S8. Use of equation (2) to analyze the voltammetric sweep data for MnO₂-MNC (a), MnO₂-MN (b) and MnO₂-MC(c) at a specific potential of 0.5 V, sweep rates varied from 0.01 to 0.1Vs⁻¹.

Figure S9. Comparison of charge storage with different concentrated gel electrolyte (at a scan rate of 0.01 V s^{-1}).

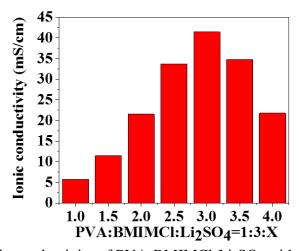



Figure S10. Ionic conductivity of PVA-BMIMC1-Li₂SO₄ with different components.

Figure S11. (a,b) SEM image of MnO₂-MNC electrode (combined with gel electrolyte) after 6000 cycles.

References

1. G. Wang, L. Zhang and J. Zhang, *Chem Soc Rev*, 2012, **41**, 797-828.

- 2.
- X. Lang, A. Hirata, T. Fujita and M. Chen, *Nature Nanotechnology*, 2011, **6**, 232-236. Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang and X. Duan, *ACS nano*, 2013, **7**, 4042-3. 4049.