Supporting Information

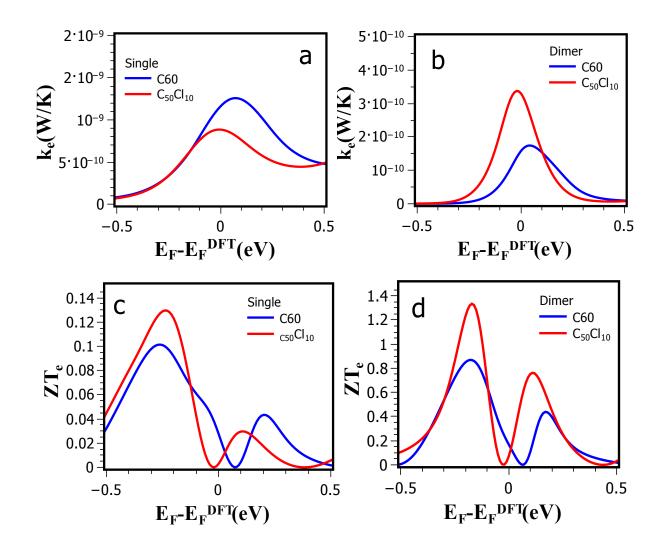
Identification of a positive-Seebeck-coefficient exohedral fullerene

Nasser Almutlaq^{‡a,c}, Qusiy Al-Galiby^{‡a,b,d}, Steven Bailey^{‡a,b} and Colin Lambert^{*‡a,b}

^aDepartment of physics, Lancaster University, Lancaster LA1 4YB, UK.

^bQuantum Technology Center, Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom.

^cDepartment of Physics, Northern Border University, Saudi Arabia.


^dDepartment of Physics, College of Education, Al Qadisiyah University, Al Qadisiyah, IRAQ.

[‡] Authors contributed equally.

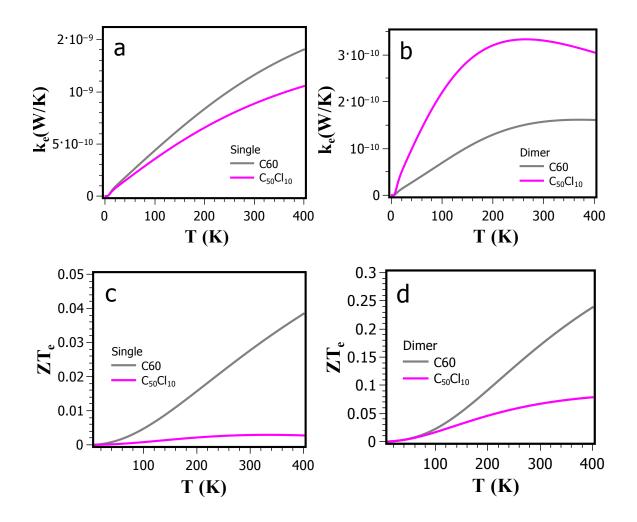

*Corresponding author: c.lambert@lancaster.ac.uk, qusiyalgaliby@gmail.com

Table S1. DFT calculation of the charge transferred between the chlorine atoms and fullerene C₅₀.

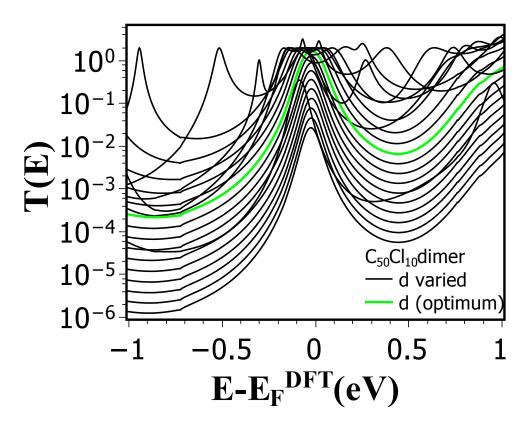

	Neutral	With Cl	ΔN
C ₅₀	200	198.67	+1.32
Cl ₁₀	70	71.318	-1.318

Figure S1. The upper panel, Figures (a and b) shows a comparison of room-temperature electronic thermal conductance (k_e) and the lower panel, Figures (c and d) show electronic figure of merit (ZT_e) over a range of Fermi energies E_F relative to the DFT-predicted Fermi energy E_F^{DFT} between for the systems in Figures 3 and 4.

Figure S2. The left column, (a and c) shows a comparison of electronic thermal conductance (k_e) and electronic figure of merit (ZT_e) as a function of temperature at DFT-predicted Fermi energy E_F^{DFT} between the systems in Figures 3a and 4a. The upper panels (a and b) show the comparison of electronic thermal conductance (k_e) the lower panels (c and d) show electronic figure of merit (ZT_e) for the systems in Figures 3b and 4b.

Figure S3. Shows the set of transmission coefficients as a function of energy for $C_{50}Cl_{10}$ dimers, where the black lines show *T(E)* for various distances d, ranging from 1.2 Å to 5 Å. The the green line shows *T(E)* at the optimum distance.