Supporting Information

pH-induced aggregated melanin nanoparticles for photoacoustic signal amplification

Kuk-Youn Ju ‡^a, Jeeun Kang‡^b, Jung Pyo^a, Joohyun Lim^a, Jin Ho Chang*^b, and Jin-Kyu Lee^a

^aDepartment of Chemistry, Seoul National University, Seoul 151-747, Korea ^bDepartment of Electronics Engineering and Sogang Institute of Advanced Technology, Sogang University, Seoul, 121-742, Korea Email: jhchang@sogang.ac.kr

	Heat relaxation time $(^{\tau}_{T})$	Stress relaxation time $(^{\tau_A})$
Single spherical MelNP (130 nm)	1.7 ns	86 ps

Fig. S1. Stress and heat transfer time for a single spherical MelNP; Characteristic stress relaxation time (τ_A) and thermal relaxation time (τ_T) of spherical nanoparticles were calculated as followed^{1,2}. Stress relaxation time (τ_A) for single spherical MelNP was calculated by

$$\tau_A \sim 2r_0/c_s$$

where r_0 is the radius of a nanoparticle, c_s is the speed of sound (1.5 x 10⁵ cm/s).

Thermal relaxation time (τ_T) of a spherical MelNP was calculated by

$$\tau_{\rm T} \sim r_0^2 c_0 \rho_0 / 3 k_{\infty}$$

where r_0 is the radius of a nanoparticle, c_0 is the heat capacity of a nanoparticle, ρ_0 is the density of a nanoparticle, and k_{∞} is the coefficient of thermal conductivity of water (6 x 10⁻³ W/cmK). We assumed that the heat capacity (c_0) and density (ρ_0) of the MelNPs were comparable to those of the synthetic melanin³, i.e., $c_0 = 0.25$ J/gK and $\rho_0 = 1.43$ g/cm³.

Fig. S2. Zeta potential of the MelNPs at each stage of the surface modification

Fig. S3. FT-IR spectra of MelNPs and surface modified MelNPs; introduction of ethylenediamine (EDA) and mPEG-SH (PEG) onto the surface of MelNPs could be determined by FT-IR spectroscopic data. After the surface modification of MelNPs (10 mg) with mPEG-SH (15 μ mol), they showed two characteristic bands around 2920 cm⁻¹ (alkyl C-H) and 1086 cm⁻¹ (C-O-C stretching) originated from PEG (MelNPs-PEG). After the surface modification of MelNPs (10 mg) with EDA (60 μ mol), they showed a characteristic band around 2920 cm⁻¹ (alkyl C-H) (MelNPs-EDA). The Surface modification of MelNP (10 mg) with PEG (15 μ mol) and EDA (60 μ mol) resulted in two characteristic bands around 2920 cm⁻¹ (MelNPs-EDA-PEG). The significant change in surface charge from negative to positive after the surface modification of MelNPs with EDA and PEG reflects the introduction of EDA onto their surface as shown in Fig. S2. Even though FT-IR data do not directly provide any additional information about further introduction of citraconic anhydride onto the MelNPs-EDA-PEG, the considerable surface charge shift from positive to negative indicates the ring opening of citraconic anhydride on the surface of MelNPs, thus causing the generation of carboxylic acid groups (Fig. S2).

Fig. S4. Dispersion stability of (a) bare MelNPs, (b) PEGylated MelNPs (MelNPs-PEG) and (c) pH-MelNPs in different pH conditions; All photographs were taken 12 hours after exposure to each solution. The black arrows indicate the precipitate of the particles.

Fig. S5. TEM images of (a) bare MelNPs and (b) pH-MelNPs (c) UV-Vis absorption spectra of MelNPs and pH-MelNPs (d) Photoacoustic signal strength of both bare MelNPs and pH-MelNPs (0.125 mg / mL)

Fig. S6. The time course of the PA signal from the pH-MelNPs, of which weight concentration was 0.5 mg/mL, after exposure to mildly acidic condition (i.e., pH 6); the increase in the weight concentration of the pH-MelNPs from 0.125 mg/mL to 0.5 mg/mL caused the most of pH-MelNPs to be aggregated and precipitated in 90 min. Under this condition, the maximally amplified PA signals from the pH-MelNPs due to their physical aggregation were observed.

Fig. S7. As the pH-MelNPs are exposed to mild acidic solution and the exposure time passes, the number and the volume contribution of the large size of the particles increases. Chang in

the size distribution of the pH-MelNPs as a function of time in terms of (a) the number and (b) the volume of the particles after exposure to neutral solution (pH 7.2) and those after exposure to mild acidic solution (pH 6), i.e., (c) and (d).

Fig. S8. Change in the UV-Vis absorption spectra of the pH-MelNPs in (a) pH 7.2 and (b) pH 6 as the exposure time passes.

Fig. S9. (a) Absorption spectra of PEG-MelNP labeled SKBR3 and the same concentration of PEG-MelNP free SKBR3 after lysis; the allow indicates the absorption wavelength (i.e., 500 nm) used for the calibration curve and quantification of MelNPs internalized in cells. (b) Calibration curve for PEG-MelNPs; the allows indicate the absorbance of PEG-MelNPs internalized in SKBR3 cells and the corresponding weight concentration of PEG-MelNPs.

References

Pustovalov, V. K.; Smetannikov, A. S.; Zharov, V. P. *Laser Phys. Lett.* 2008, *5*, 775-792.
Pustovalov, V. K.; Astafyeva, L. G.; Galanzha, E.; Zharov, V. P. *Cancer nanotechnol*.2010, *1*, 35-46.
de Albuquerque, J. E.; Giacomantonio, C.; White, A. G.; Meredith, P. *Appl. Phys. Lett.* 2005, 87. 061029.