Supporting Information

Hierarchically Branched Fe₂O₃@TiO₂ Nanorod Arrays for Photoelectrochemical Water Splitting: Facile Synthesis and Ehanced Photoelectrochemical Performance.

Yuangang Li,^{a,*} Xiaoliang Wei,^a Bowen Zhu,^b Hua Wang,^b Yuxin Tang,^b Tze Chien Sum^c and Xiaodong Chen^{b*}

 ^aCollege of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
^cSchool of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
E-mail: yuangang li@163.com, chenxd@ntu.edu.sg

Fig. S1. Low-magnification SEM image of pristine Fe₂O₃ NRs.

Fig. S2.Top-view SEM image of the Fe_2O_3 (iO_2 BNRs with different

growth time (A 1h, B 1.5 h, C 2h, D 2.5 h, E 3h, F 3.5 h, G 4h).Scale

bar=100 nm

Fig. S3.TEM image of the Fe₂O₃@TiO₂ BNRs.

Fig. S4. Enlarged SEM image of the Fe₂O₃@TiO₂ BNRs (some tiny TiO₂

nanorods marked by the white arrows).

Fig. S5. High-resolution XPS spectrum for Fe (A), Ti (B) and O (C) of

the Fe₂O₃@TiO₂ BNRs.

Fig. S7 The spectral distribution of light source.

Fig. S8 A Schematic illustration for the geometry and design of PEC

reactor.