Supporting Information

Post synthetic modification of amino-functionalized metal-organic framework for the efficient enrichment of N-linked glycopeptides

Wen Ma,^a Linnan Xu,^a Ze Li,^a Yunlong Sun,^b Yu Bai^{*a} and Huwei Liu^a

^aBeijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Institute of Analytical Chemistry, Peking University, Beijing 100871, China.

^bCenter for Soft Matter Science and Engineering, Peking University, Beijing, 100871 *Tel: +86 10 6275 8198; E-mail: <u>yu.bai@pku.edu.cn</u>

Experimental Section

Chemicals and Materials

Trypsin, horseradish peroxidase (HRP), human serum immunoglobulin G (human IgG), azidotrimethylsilane (TMSN₃), acetonitrile (ACN) were purchased from Sigma-Aldrich. Amberlite IR-120 resin (H⁺ form), tert-butyl nitrate (tBuONO), 2,5-dihydroxybenzoic acid (DHB), dithiothreitol (DTT) and iodoacetamide (IAA) were purchased from J&K Scientific Ltd. Tetrahydrofuran (THF), anhydrous potassium carbonate, copper(II) sulfate (CuSO₄·5H₂O) and ureawere from Xilong Chemical Co., Ltd. Ammonium bicarbonate (NH₄HCO₃) was from Fluka. Ethanol and phosphoric acid (H₃PO₄) were from Beijing Chemical Works. Chromic nitrate hydrate, sodium methoxide and boron trifluoride/ether were from Sinopharm Chemical Reagent Co., Ltd. 2-aminoterephthalic acid was from AlfaAesar China Chemical Co., Ltd. Anhydrous methanol and dichloromethane (CH₂Cl₂) were from Beijing Tong Guang Fine Chemicals Company. β-D-maltose octaacetate was purchased from Energy Chemical. Ascorbic acid was purchased from Aladdin Industrial Inc. Trifluoroacetic acid (TFA) was obtained from Acros Organics. Peptide-N-glycosidase (PNGase F) was from New England Biolabs (Ipswich, MA, USA). Water used for digestion and enrichment analysis was from Wahaha Group Co., Ltd. All chemicals were of analytical grade except ACN, which were of HPLC grade. Human serum of a healthy person was obtained from Peking University Hospital.

Preparation of MIL-101(Cr)-maltose

Preparation of parent MIL-101(Cr)-NH₂

MIL-101(Cr)-NH₂was synthesized according to a previous report^{S1}. Briefly, 1500mg chromic nitrate hydrate and 690mg 2-aminoterephthalic acid were dispersed in 21mL deionized water in a 30mL Teflon-lined stainless steel autoclave, the reaction was conducted at 130°C for 24h. The product was then washed by ethanol for several times and dried in vacuum.

Preparation of MIL-101(Cr)-N₃

The post synthetic modification of MIL-101(Cr)-NH₂ was conducted according to a generic post functionalization method^{S2} starting from amino-derived metal-organic frameworks. The freshly preparedMIL-101(Cr)-NH₂(80mg) was treated with tBuONO(0.3mL) and TMSN₃(0.27mL) in THF for 20min at room temperature. The resulting compound was washed three times by THF and three times by CH₂Cl₂.

Preparation of 1-propargyl-O-maltose

1-propargyl-O-maltose was synthesized according to a reported method^{S3}. In detail, under nitrogen atmosphere, 25.0g β -D-maltose octaacetate was dissolved in 350mL CH₂Cl₂ in a dried flask, then 2.5mL propargylalcohol was added. The suspention was stirred at 0°C for1h after the addition of 7.5mL boron trifluoride/ether and at room temperature for another 4h. After 12.5g anhydrous potassium carbonate was added, the solution continuously stirred for 30min. The unreacted solid was filtered out and the filtrate was concentrated. 1-propargyl-acetyl-maltose was obtained with m/z=697.0 ([M+Na]⁺) by MALDI-TOF MS. The obtained solid was further dissolved in 750mL anhydrous methanol solution. Then, 250mL sodium methoxide in methanol (1 M) was added dropwise. The reaction was conducted at room temperature for 6h, and the resulting solution was neutralized by Amberlite IR-120 resin (H⁺ form). The solution was then filtered out and the filtrate was concentrated. 1-propargyl-O-maltose was obtained with m/z=402.6 ([M+Na]⁺) by MALDI-TOF MS.

Preparation of MIL-101(Cr)-maltose

The obtained MIL-101(Cr)-N₃(170mg) and an excess of 1-propargyl-O-maltose was

dispersed in 40mL methanol/water(v/v=1:1) solution in a 100mL flask and sonicated for 20min. Then 2mL solution containing 138mg $CuSO_4 \cdot 5H_2O$ and 323 mg ascorbic acid was added. The mixture continuously stirred for 72 h at 40 °C. The obtained solid was washed by water, methanol, ethanol nine times anddried in the vacuum oven.

Characterization

Fourier-transformed infrared spectroscope (FT-IR) characterization was measured with KBr pellet by Bruker Tensor 27 FT-IR. Transmittance spectrum was acquired with resolution of 4 cm⁻¹ and average spectrum of 32-time measurements was recorded. ¹H-NMR spectra were recorded on a Bruker ARX400 FT-NMR spectrometer(at 400 MHz). All samples were digested in NaOD/D₂O. Power X-ray diffraction pattern was carried out on a Bruker D2 diffractometer with Cu K α radiation (λ =1.5406Å) at an accelerating potential of 40kV and a scanning speed of 2° min⁻¹. For transmission electron microscopy (TEM) characterization, the NPs were collected on carbon-coated copper grids. TEM images were recorded on a JEOL JEM-2100 at 200kV. N₂ adsorption-desorption experiment was conducted in ASAP 2020M apparatus. MIL-101(Cr)-NH₂ was degassed at 120°C and MIL-101(Cr)-N₃, MIL-101(Cr)-maltose were degassed at 100°C in case of decomposition. The BET surface area was calculated over the range of relative pressures between 0.05 and 0.20. It revealed that the surface area were 2357.4 m² g⁻¹, 1518.6 m² g⁻¹and 250.2 m² g⁻¹ for MIL-101(Cr)-NH₂, MIL-101(Cr)-N₃, and MIL-101(Cr)-maltose, respectively.

Tryptic digest of glycoproteins

2mg HRP or IgG was dissolved in 1mL solution containing 50mM NH₄HCO₃ and 8M urea. After that, proteins were reduced with 20 μ L DTT (1M) at 60°C for 1 h and alkylated by 7.4 mg IAA at 37°C in the dark for 45 min. Then, the solution was diluted ten-fold with 50mM NH₄HCO₃, followed by the addition of trypsin at enzyme-protein ratio of 1: 20 (w/w). The solution was incubated at 37°C for 18h, and the tryptic digests were stored at -20°C for further use. For human serum sample, the preparation was almost the same. In detail, 5 μ L human serum was diluted by 40 μ L denaturing solution containing 50mM NH₄HCO₃ and 8M urea. Then, the sample was reduced with 5 μ L DTT (200 mM) at 60°C for 1 h and alkylated by 7.2 mg IAAat 37°C in the dark for 45 min. The resulting solution was diluted by 350μ L 50mM NH₄HCO₃ and digested with trypsin (protein: enzyme = 20:1, w/w) for 20 h.The peptides mixture were lyophilized and kept at -20°C for further use.

Enrichment of glycopeptides in standard glycoprotein and human serum sample

20µg MIL-101(Cr)-maltose was suspended in 150µL loading buffer containingACN/H₂O/TFA (88:7:5, v/v/v). Then10µL tryptic digest HRP (2µg) or 15µL human IgG $(3\mu g)$ was added and the solution was incubated for 30min. After washed by loading buffer three times to remove non-glycopeptides, the adsorbed glycopeptides were eluted with elution buffer containing ACN/H2O/TFA (30:69.9:0.1, v/v/v). The collected peptides were analyzed by MALDI-TOF MS. For human serum sample, peptides were redissolved in 200µLACN/H₂O/TFA (88:7:5, v/v/v), then 200µg MIL-101(Cr)-maltose was added. The enrichment was gently carried out for 30min, then washed by loading buffer for three times. The glycopeptides were eluted with $2 \times 30 \mu L$ elution buffer and lyophilized. The collected peptides weredeglycosylation for LC-MS/MS analysis.

Deglycosylation of glycopeptides by PNGase F

The lyophilized glycopeptides were redissolved in 50mM NH_4HCO_3 , followed by addition of 1µL PNGaseF. The reaction was carried out at 37°C for 16h.The resulting solution was further analyzed by MALDI-TOF MS or LC-MS/MS.

Mass spectrometry analysis

MALDI-TOF MS analysis

MALDI-TOF MS spectra were obtained by a Bruker Daltonics ultraflex TOF mass spectrometer in reflection mode. A mixture of 25 mg/mL DHB in ACN/H₂O/H₃PO₄ (70:29:1, v/v/v) was prepared as the matrix. For eluted glycopeptides, 0.5µL elute was mixed with 0.5µL matrix on the steel plate for MS analysis.

LC-MS/MS Analysis

All LC-MS/MS were performed on a Velos Pro Orbitrap Elite mass spectrometer (Thermo Scientific, USA) equipped with a nano-ESI source. The samples were vacuum-centrifuged to

dryness, reconstituted in 0.2% formic acid, loaded onto a pre-column and separated on a C18 column. For a gradient separation, 5-30% B in 121min, 30%-75% B in 4min, then held at 75% B for 20 min (A = 0.1% formic acid in water, B = 0.1% formic acid in acetonitrile). Full MS scan was obtained from m/z=375-1600 at a resolution of 120000 followed by CID (Collision Induced Dissociation) MS/MS scans.

Database search and data analysis

All the raw data files were converted to mascot generic format before submitted for Mascot (version 2.3.02) database search. The search parameters were set as follows: fixed modification of cysteine residues (+57.0215 Da), variable modification of methionine oxidation (+15.9949 Da) and deamidation (+0.9840 Da). The mass tolerances were 5 ppm for initialprecursor ions and 0.5 Da for fragment ions. Two missed cleavages were allowed for trypsin restriction. Only glycopeptides with N-!P-S/T were considered as highly reliable results.

Reference:

S1.D. M. Jiang, L. L. Keenan, A. D. Burrows and K. J. Edler, *Chem. Commun.*, 2012, 48, 12053-12055.

S2.M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero, E. Jeanneau, V. Lecocq, C. Pinel and D. Farrusseng, *J. Am. Chem. Soc.*, 2010, **132**, 4518-4519.

S3.Z. C. Xiong, L. Zhao, F. J. Wang, J. Zhu, H. Q. Qin, R. A. Wu, W. B. Zhang and H. F. Zou, *Chem. Commun.*, 2012, **48**, 8138-8140.

Figures and Table

Fig. S1 (A)¹H-NMR spectra, (B) PXRD pattern and (C) TEM image of (a) MIL-101(Cr)-NH₂, (b) MIL-101(Cr)-N₃, (c) MIL-101(Cr)-maltose and (d) the simulated PXRD pattern calculated from MIL-101(Cr) structure.

Fig. S2 The effect of different acetonitrile concentration in loading buffer on intensity of five seleced glycopeptides captured by MIL-101(Cr)-maltose from HRP digest.

Fig. S3 MALDI-TOF MS spectra of HRP tryptic digest (1.0 pmol/μL)(A) by direct analysis,(B) after MIL-101(Cr)-N₃ enrichment and (C) afterMIL-101(Cr)-maltose enrichment.

Fig. S4 The intensity of six selected glycopeptides from 3 μ g human IgG tryptic digest after enrichment by different amount of (A) MIL-101(Cr)-maltose and (B) MIL-101(Cr)-NH₂.

Fig. S5 MALDI-TOF MS of glycopeptides enriched from human IgGdigest $(3\mu g)$ using MIL-101(Cr)-maltose nanoparticles, (A) for the first time, (B) for the third time and (C) for the fifth time.

Fig. S6 MALDI-TOF-MS spectra of IgG tryptic digest without enrichment 1000 fmol $(0.5\mu L)$.

Peak	Observed	Glycan	Pantida saguanca
number	m/z	composition	r epilde sequence
H1	1843.9	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	NVGLN*R
H2	2445.1	[Hex]3[HexNAc]2 [Xyl]1	PTL <mark>N</mark> *TTYLQTLR
H3	2531.1	[HexNAc]1[Fuc]1	SFAN*STQTFFNAFVEAMDR
H4	2542.7	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	SSPN*ATDTIPLVR
H5	2590.2	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	PTLN*TTYLQTLR
H6	2613.9	[Hex]3[HexNAc]2 [Xyl]1	MGN*ITPLTGTQGQIR
H7	3147.1	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	GLCPLNGN*LSALVDFDLR
H8	3190.3	[HexNAc]1[Fuc]1	LHFHDCFVNGCDASILLDN*TTSFR
H9	3206.4	[Hex]3[HexNAc]2 [Xyl]1	SFAN*STQTFFNAFVEAMDR
H10	3353.5	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	SFAN*STQTFFNAFVEAMDR
H11	3386.7	[Hex]6[HexNAc]4[Fuc]2[Xyl]1	DSFRNVGL <mark>N</mark> *R
H12	3674.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	GLIQSDQELFSSPN*ATDTIPLVR
H13	4221.0	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	QLTPTFYDNSC(AAVESACPR)PN*V
			SNIVR
H14	4840.7	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	LYN*FSNTGLPDPTLN*TTYLQTLR
		[Hex]3[HexNAc]2 [Xyl]1	
H15	4986.6	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	LYN*FSNTGLPDPTLN*TTYLQTLR
		[Hex]3[HexNAc]2[Fuc]1[Xyl]1	

Table S1 Observed glycopeptides and glycan composition of HRP tryptic digests enriched by MIL-101(Cr)-maltose. N* denotes the N-linked glycosylation sites.

Table S2 Observed glycopeptides and glycan composition of human IgG tryptic digests enriched by MIL-101(Cr)-maltose. N* denotes the N-linked glycosylation sites.

		, ,	
Peak	Observed	Glycan	Pentide sequence
number	m/z	composition	r eptide sequence
I1	2400.1	[Hex]3[HexNAc]3[Fuc]1	EEQFN*STFR
I2	2433.0	[Hex]3[HexNAc]3[Fuc]1	EEQYN*STYR
13	2490.1	[Hex]3[HexNAc]4	EEQY <mark>N</mark> *STYR
I4	2562.3	[Hex]4[HexNAc]3[Fuc]1	EEQF <mark>N*</mark> STFR
15	2602.4	[Hex]3[HexNAc]4[Fuc]1	EEQFN*STFR
I6	2618.2	[Hex]4[HexNAc]4	EEQFN*STFR
I7	2634.3	[Hex]3[HexNAc]4[Fuc]1	EEQYN*STYR
18	2650.3	[HexNAc]4[HexNAc]4	EEQYN*STYR
19	2660.2	[Hex]3[HexNAc]5	EEQFN*STFR
I10	2691.7	[Hex]3[HexNAc]5	EEQYN*STYR
I11	2764.6	[Hex]4[HexNAc]4[Fuc]1	EEQFN*STFR
I12	2780.6	[Hex]5[HexNAc]4	EEQFN*STFR
I13	2796.4	[Hex]4[HexNAc]4[Fuc]1	EEQYN*STYR
I14	2805.9	[Hex]3[HexNAc]5[Fuc]1	EEQFN*STFR
I15	2812.7	[Hex]5[HexNAc]4	EEQYN*STYR

I16	2822.6	[Hex]4[HexNAc]5	EEQFN*STFR
I17	2838.3	[Hex]3[HexNAc]5[Fuc]1	EEQY <mark>N</mark> *STYR
I18	2853.9	[Hex]4[HexNAc]5	EEQY <mark>N</mark> *STYR
I19	2926.8	[Hex]5[HexNAc]4[Fuc]1	EEQFN*STFR
I20	2959.3	[Hex]5[HexNAc]4[Fuc]1	EEQY <mark>N</mark> *STYR
I21	2967.7	[Hex]4[HexNAc]5 [Fuc]1	EEQFN*STFR
122	2984.5	[Hex]5[HexNAc]5	EEQF <mark>N*</mark> STFR
I23	2999.8	[Hex]4[HexNAc]5 [Fuc]1	EEQY <mark>N</mark> *STYR
I24	3016.1	[Hex]5[HexNAc]5	EEQY <mark>N</mark> *STYR
I25	3057.3	[Hex]4[HexNAc]4[Fuc]1[NeuAc]1	EEQFN*STFR
I26	3085.3	[Hex]4[HexNAc]4[Fuc]1[NeuAc]1	EEQY <mark>N</mark> *STYR
I27	3130.9	[Hex]5[HexNAc]5[Fuc]1	EEQFN*STFR
I28	3162.6	[Hex]5[HexNAc]5[Fuc]1	EEQY <mark>N</mark> *STYR
I29	3247.5	[Hex]4[HexNAc]4[Fuc]1	TKPREEQF <mark>N</mark> *STFR
130	3279.6	[Hex]4[HexNAc]4[Fuc]1	TKPYEEQY <mark>N</mark> *STYR
I31	3409.6	[Hex]5[HexNAc]4[Fuc]1	TKPREEQF <mark>N</mark> *STFR
132	3441.8	[Hex]5[HexNAc]4[Fuc]1	TKPYEEQY <mark>N</mark> *STYR
133	3452.0	[Hex]5[HexNAc]5[Fuc]1[NeuAc]1	EEQY <mark>N</mark> *STYR

Table S3 Observed glycopeptides of human serum tryptic digests without enrichment. OS=Organism Name, GN=Gene Name, PE=Protein Existence, SV=SequenceVersion. N* denotes the N-linked glycosylation sites.

Protein	Description	Peptide Sequence
CERU_HUMAN	Ceruloplasmin	DVDKEFYLFPTVFDEN*ESLLLEDNIR
	OS=Homo sapiens	
	GN=CP PE=1 SV=1	
WDR33_HUMAN	WD repeat-containing	KTIDY <mark>N</mark> *PSVIK
	protein 33 OS=Homo	
	sapiens GN=WDR33	
	PE=1 SV=2	

Table S4 Observed glycopeptides of human serum tryptic digests enriched by MIL-101(Cr)maltose. OS=Organism Name, GN=Gene Name, PE=Protein Existence, SV=Sequence Version. N* denotes the N-linked glycosylation sites.

Protein	Description	Peptide Sequence
A1AT_H	Alpha-1-antitrypsin OS=Homo	YLGN*ATAIFFLPDEGK
UMAN	sapiens GN=SERPINA1 PE=1	ADTHDEILEGLNFN*LTEIPEAQIHEGFQEL
	SV=3	LR
AACT_H	Alpha-1-antichymotrypsin	YTGN*ASALFILPDQDK
UMAN	OS=Homo sapiens	FN*LTETSEAEIHQSFQHLLR

	GN=SERPINA3 PE=1 SV=2	
A2MG H	Alpha-2-macroglobulin OS=Homo	SLGNVN*FTVSAEALESOELCGTEVPSVPE
UMAN	sapiens GN=A2M PE=1 SV=2	HGR
		GCVLLSYLN*ETVTVSASLESVR
		VSN*QTLSLFFTVLQDVPVR
A1AG1 H	Alpha-1-acid glycoprotein 1	EN*GTISR
UMAN	OS=Homo sapiens GN=ORM1	QDQCIY <mark>N</mark> *TTYLNVQR
	PE=1 SV=1	NEEY <mark>N*</mark> K
ANT3_H	Antithrombin-III OS=Homo	SLTFN*ETYQDISELVYGAK
UMAN	sapiens GN=SERPINC1 PE=1	WVSN*KTEGR
	SV=1	LGACN*DTLQQLMEVFK
		LGACN*DTLQQLMEVFKFDTISEK
APOD_H	Apolipoprotein D OS=Homo	ADGTVNQIEGEATPVN*LTEPAK
UMAN	sapiens GN=APOD PE=1 SV=1	ADGTVNQIEGEATPVN*LTEPAKLEVK
APOB_H	Apolipoprotein B-100 OS=Homo	FN*SSYLQGTNQITGR
UMAN	sapiens GN=APOB PE=1 SV=1	YDFN*SSMLYSTAK
		FVEGSHN*STVSLTTK
		VNQNLVYESGSL <mark>N</mark> *FSK
APOC4_H	Apolipoprotein C-IV OS=Homo	ELLETVVN*R
UMAN	sapiens GN=APOC4 PE=1 SV=1	
	Alpha Lagid alugametric 2	
AIAG2_H	Alpha-1-acid glycoprotein 2	QNQCFYN*SSYLNVQK
UMAN	DE = 1 SV = 2	
ATRN H	Attractin OS=Homo saniens	GICN*SSDVR
UMAN	GN=ATRN PE=1 SV=2	IDSTGN*VTNELR
АРОН Н	Beta-2-glycoprotein 1 OS=Homo	VYKPSAGN*NSLYR
UMAN	sapiens GN=APOH PE=1 SV=3	LGN*WSAMPSCK
AFAM H	Afamin OS=Homo sapiens	YAEDKFN*ETTEK
UMAN	GN=AFM PE=1 SV=1	DIENF <mark>N</mark> *STQK
CERU H	Ceruloplasmin OS=Homo sapiens	EHEGAIYPDN*TTDFQR
UMAN	GN=CP PE=1 SV=1	EN*LTAPGSDSAVFFEQGTTR
		ELHHLQEQ <mark>N</mark> *VSNAFLDK
		ELHHLQEQN*VSNAFLDKGEFYIGSK
CLUS_H	Clusterin OS=Homo sapiens	HN*STGCLR
UMAN	GN=CLU PE=1 SV=1	EDALN*ETR
		KEDALN*ETR
		KKEDAL <mark>N</mark> *ETR
		LAN*LTQGEDQYYLR
		MLN*TSSLLEQLNEQFNWVSR
CO4A_H	Complement C4-A OS=Homo	GL <mark>N</mark> *VTLSSTGR
UMAN	sapiens GN=C4A PE=1 SV=1	FSDGLESN*SSTQFEVK
CRG HU	Corticosteroid-binding globulin	AOLLOGLGFN*LTER

MAN	OS=Homo sapiens	
	GN=SERPINA6 PE=1 SV=1	
CO8A_H	Complement component C8 alpha	GGSSGWSGGLAQN*R
UMAN	chain OS=Homo sapiens GN=C8A PE=1 SV=2	
CO4B_H	Complement C4-B OS=Homo	FSDGLES <mark>N</mark> *SSTQFEVK
UMAN	sapiens GN=C4B PE=1 SV=1	GLN*VTLSSTGR
CO6_HU MAN	Complement component C6 OS=Homo sapiens GN=C6 PE=1 SV=3	VL <mark>N</mark> *FTTK
CO7 HU	Complement component C7	N*VTI TGR
MAN	OS=Homo sapiens GN=C7 PE=1	I TERK
	SV=2	
CO9 HU	Complement component C9	AVN*ITSENLIDDVVSLIR
MAN	OS=Homo sapiens GN=C9 PE=1	
	SV=2	
CO3_HU	Complement C3 OS=Homo	TVLTPATNHMGN*VTFTIPANR
MAN	sapiens GN=C3 PE=1 SV=2	
C1S_HU	Complement C1s subcomponent	NCGVN*CSGDVFTALIGEIASPNYPKPYPE
MAN	OS=Homo sapiens GN=C1S PE=1	NSR
	SV=1	
CFAI_HU MAN	Complement factor I OS=Homo sapiens GN=CFI PE=1 SV=1	FLN <mark>N</mark> *GTCTAEGK
C4BPA_H	C4b-binding protein alpha chain	LSVDKDQYVEPEN*VTIQCDSGYGVVGPQ
UMAN	OS=Homo sapiens GN=C4BPA	SITCSG <mark>N*</mark> R
	PE=1 SV=2	
C4BPB_H	C4b-binding protein beta chain	LGHCPDPVLVNGEFSSSGPV <mark>N*</mark> VSDK
UMAN	OS=Homo sapiens GN=C4BPB	
	PE=1 SV=1	
CPN2_HU	Carboxypeptidase N subunit 2	AFGSNPN*LTK
MAN	OS=Homo sapiens GN=CPN2	
	PE=1 SV=2	
MAN	Calcium-binding protein p22	GEN*GILSK
IVIAIN	PF=1 SV=3	
СЕАН Н	Complement factor H OS=Homo	IPCSOPPOIEHGTIN*SSR
UMAN	sapiens GN=CFH PE=1 SV=4	
FETUA	Alpha-2-HS-glycoprotein	VCQDCPLLAPLN*DTR
HUMAN	OS=Homo sapiens GN=AHSG	AALAAFNAQN <mark>N</mark> *GSNFQLEEISR
	PE=1 SV=1	KVCQDCPLLAPLN*DTR
FHR1_HU	Complement factor H-related	LQNNENN*ISCVER
MAN	protein 1 OS=Homo sapiens	

	GN=CFHR1 PE=1 SV=2	
FA10_HU	Coagulation factor X OS=Homo	GDNN*LTR
MAN	sapiens GN=F10 PE=1 SV=2	
FINC_HU	Fibronectin OS=Homo sapiens	LDAPTNLQFVN*ETDSTVLVR
MAN	GN=FN1 PE=1 SV=3	DQCIVDDITYNV <mark>N</mark> *DTFHK
HRG_HU	Histidine-rich glycoprotein	VIDFN*CTTSSVSSALANTK
MAN	OS=Homo sapiens GN=HRG	
	PE=1 SV=1	
HPT_HU	Haptoglobin OS=Homo sapiens	NLFL <mark>N*</mark> HSEN*ATAK
MAN	GN=HP PE=1 SV=1	VVLHPN*YSQVDIGLIK
		MVSHHN*LTTGATLINEQWLLTTAK
HEMO_H	Hemopexin OS=Homo sapiens	SWPAVGN*CSSALR
UMAN	GN=HPX PE=1 SV=2	ALPQPQN*VTSLLGCTH
HEP2_HU	Heparin cofactor 2 OS=Homo	DFVN*ASSK
MAN	sapiens GN=SERPIND1 PE=1	
	SV=3	
IGHG1_H	Ig gamma-1 chain C region	EEQY <mark>N</mark> *STYR
UMAN	OS=Homo sapiens GN=IGHG1	
	PE=1 SV=1	
IGHG2_H	Ig gamma-2 chain C region	EEQFN*STFR
UMAN	OS=Homo sapiens GN=IGHG2	TKPREEQFN*STFR
	PE=1 SV=2	
IGHG3_H	Ig gamma-3 chain C region	EEQYN*STFR
UMAN	OS=Homo sapiens GN=IGHG3	
	PE=1 SV=2	
IGHG4_H	Ig gamma-4 chain C region	EEQFN*STYR
UMAN	OS=Homo sapiens GN=IGHG4	
	PE=1 SV=1	
IGHA1_H	Ig alpha-1 chain C region	LSLHRPALEDLLLGSEAN*LTCTLTGLR
UMAN	OS=Homo sapiens GN=IGHA1	
	PE=1 SV=2	
IGHA2_H	Ig alpha-2 chain C region	TPLTAN*ITK
UMAN	OS=Homo sapiens GN=IGHA2	LSLHRPALEDLLLGSEAN*LTCTLTGLR
	PE=1 SV=3	
IGHM_H	Ig mu chain C region OS=Homo	N*NSDISSIR
UMAN	sapiens GN=IGHM PE=1 SV=3	YKN*NSDISSIR
		GLIFQQN*ASSMCVPDQDIAIR
		IHIN*ISESHPN*AIFSAVGEASICEDDWNS
	Immun alabalin I abain	
	OS-Homo conjora CN-ICL DE-1	ENIODLIOLIK
AIN	SV-4	
	Sv = 4 D lasma protessa C1 inhihitar	DTEVN*ASP
	OS=Homo sanjons	VI SN*NSDANI FI INTWVAV
1111	os nomo sapiens	A POLI LIODITI I PETITI I M AUIZ

	GN=SERPING1 PE=1 SV=2	
ITIH3_H	Inter-alpha-trypsin inhibitor heavy	NAHGEEKEN*LTAR
UMAN	chain H3 OS=Homo sapiens	
	GN=ITIH3 PE=1 SV=2	
ITIH4_H	Inter-alpha-trypsin inhibitor heavy	DQFNLIVFSTEATQWRPSLVPASAENVN*K
UMAN	chain H4 OS=Homo sapiens	
	GN=ITIH4 PE=1 SV=4	
KV203_H	Ig kappa chain V-II region MIL	FSGSGSGTN*FTLK
UMAN	OS=Homo sapiens PE=1 SV=1	
KLKB1_	Plasma kallikrein OS=Homo	IYSGILN*LSDITK
HUMAN	sapiens GN=KLKB1 PE=1 SV=1	GVNF <mark>N</mark> *VSK
		IYPGVDFGGEEL <mark>N</mark> *VTFVK
KNG1_H	Kininogen-1 OS=Homo sapiens	YNSQ <mark>N</mark> *QSNNQFVLYR
UMAN	GN=KNG1 PE=1 SV=2	LNAEN <mark>N</mark> *ATFYFK
LG3BP_H	Galectin-3-binding protein	ALGFEN*ATQALGR
UMAN	OS=Homo sapiens	
	GN=LGALS3BP PE=1 SV=1	
LUM_HU	Lumican OS=Homo sapiens	LHINHNN*LTESVGPLPK
MAN	GN=LUM PE=1 SV=2	AFEN*VTDLQWLILDHNLLENSK
LV202_H	Ig lambda chain V-II region NEI	RPSGVSN*R
UMAN	OS=Homo sapiens PE=1 SV=1	
PEDF_HU	Pigment epithelium-derived factor	VTQN*LTLIEESLTSEFIHDIDR
MAN	OS=Homo sapiens	
	GN=SERPINF1 PE=1 SV=3	
PON1_H	Serum paraoxonase/arylesterase 1	HAN*WTLTPLK
UMAN	OS=Homo sapiens GN=PON1	VTQVYAE <mark>N</mark> *GTVLQGSTVASVYK
	PE=1 SV=2	
PLTP_HU	Phospholipid transfer protein	VSN*VSCQASVSR
MAN	OS=Homo sapiens GN=PLTP	
	PE=1 SV=1	
TRFE_HU	Serotransferrin OS=Homo sapiens	CGLVPVLAENYN*K
MAN	GN=TF PE=1 SV=2	QQQHLFGSN*VTDCSGNFCLFR
THRB_H	Prothrombin OS=Homo sapiens	N*FTENDLLVR
UMAN	GN=F2 PE=1 SV=2	GHVN*ITR
TNPO3_H	Transportin-3 OS=Homo sapiens	DAN*CSVMR
UMAN	GN=TNPO3 PE=1 SV=3	
TTHY_H	Transthyretin OS=Homo sapiens	ALGISPFHEHAEVVFTAN*DSGPR
UMAN	GN=TTR PE=1 SV=1	
WDR33_	WD repeat-containing protein 33	KTIDYN*PSVIK
HUMAN	OS=Homo sapiens GN=WDR33	
	PE=1 SV=2	
VTNC_H	Vitronectin OS=Homo sapiens	NN*ATVHEQVGGPSLTSDLQAQSK
UMAN	GN=VTN PE=1 SV=1	

ZA2G_H	Zinc-alpha-2-glycoprotein	FGCEIENN*R
UMAN	OS=Homo sapiens GN=AZGP1	DIVEYY <mark>N</mark> *DSN*GSHVLQGR
	PE=1 SV=1	
ZN750_H	Protein ZNF750 OS=Homo	LN*PSDPNR
UMAN	sapiens GN=ZNF750 PE=2 SV=1	