Supplementary Information

Plasmon Resonance Energy Transfer and Plexcitonic Solar Cell

Fan Nan,^{‡a} Si-Jing Ding,^{‡a} Liang Ma,^{‡a} Zi-Qiang Cheng,^a Yu-Ting Zhong,^a Ya-Fang Zhang,^a

Yun-Hang Qiu,^a Xiaoguang Li,^{*b} Li Zhou,^{*a} and Qu-Quan Wang^{*a,c}

^aKey Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School

of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

^bInstitute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China

^cThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China

Figure S1. Extinction spectra of the reference sample of Au@RB hybrid, which does not exhibit Fano resonance. The extinction intensity of RB is set to be comparable with that of Chl.

Figure S2. *I-V* curves of the reference samples of Au@RB-SSCs.

FigureS3. Schematic of the Pump-Probe experimental setup. M = mirror, L = lens, D = detector, S = sample.

Figure S4. The normalized Fano shape of Au@Chl hybrids with varied SPR (a) and varied μ_{dye} (b). The normalized Fano shape $(\sigma_{dye@Au}(\nu)/\sigma'_{Au}(\nu))$ of each Au@Chl absorption spectrum is fitted by

the function (red lines) $f(v) = \left\{ (1-a_{\rm F}) + a_{\rm F} \frac{[h(v-v_0) + q\gamma]^2}{[h(v-v_0)]^2 + \gamma^2} \right\}$, from which we extract the q and $a_{\rm F}$ parameters.