Electronic Supplementary Information (ESI) for

Controllable Asymmetrical/Symmetrical Coating Strategy for Architecture Mesoporous Organosilica Nanostructures

Xue Wang, Yapeng He, Chong Liu, Yunling Liu, Zhen-An Qiao* and Qisheng Huo

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. *E-mail: qiaozhenan@jlu.edu.cn Fax: +86-431-85168602; Tel: +86-431-85168602

Figure S1. TEM images of (a), (b) core-shell Au@SiO₂, (c) Janus Au&PMO, (d) yolk-shell Au@PMO nanoparticles.

Figure S2. Hydrodynamic diameters of Au@SiO₂, Au&PMO, Au@PMO and Au@PMO/mSiO₂ nanoparticles.

Figure S3. ²⁹Si MAS NMR spectra of Au@SiO₂ nanoparticles.

Figure S4. The SEM images and elemental mapping of (a) Au&PMO and (b) Au@PMO nanoparticles.

Figure S5. FTIR spectra of Au&PMO and Au@PMO nanoparticles.

Figure S6. TG curves of Au&PMO and Au@PMO nanoparticles.

Sample	BET Surface Area (m ² g ⁻¹)	Pore Diameter (nm)	Pore Volume (cm ³ g ⁻¹)
Au&PMO	964	2.2	0.99
Au@PMO	884	2.1	0.97
Au@PMO/mSiO2	429	2.1, 6.1	0.60

Table S1. Physicochemical properties of Au&PMO, Au@PMO and Au@PMO/mSiO₂ nanoparticles.

Pore Diameter is BJH pore diameter calculated by the adsorption branches of the nitrogen sorption isotherms.

Pore Volume is the total pore volume determined at the relative pressure P/P_0 of 0.99.

Figure S7. Pore size distribution curves of Au&PMO, Au@PMO and Au@PMO/mSiO₂ nanoparticles.

Figure S8. TEM images of Au@SiO₂ nanospheres etched by ammonia at different reaction time: (a) 0 h, (b) 0.5 h, (c) 1h, (d) 3 h.

Charge transfer complex (blue)

Scheme S1. Chemical structure of TMB, its oxidation products and reaction scheme of TMB oxidation.

Figure S9. UV-vis absorbance changes at catalyzed oxidation of TMB by using Janus or hollow PMO nanoparticles without Au cores as catalysts.

Figure S10. Kinetic analysis of the catalytic reactions and plot of $\ln(C_t/C_0)$ versus time for 4nitrophenol. The ratio of C_t and C_0 , where C_t and C_0 are 4-nitrophenol concentrations at time t and 0, respectively, is measured from the relative intensity of the respective absorbance, A_t/A_0 . The linear relations of $\ln(C_t/C_0)$ versus time indicate that the reaction follows first-order kinetics.

Figure S11. Photographs of hemolysis of RBCs incubated with water and physiological saline; water (+) and physiological saline (-) were used as positive and negative control, respectively.

Figure S12. Photographs of hemolysis of RBCs incubated with three types of nanoparticles; the presence of red hemoglobin in the supernatant indicates damaged RBCs.

Figure S13. (a), (b) TEM images of MSNs; (c) photographs of hemolysis of RBCs incubated with MSNs (the presence of red hemoglobin in the supernatant indicates damaged RBCs); hemolysis percentage of RBCs incubated with MSNs (d) at a concentration of 500 μ g/ml for different times; (e) at different concentration ranging from 250 to 2000 μ g/ml.