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Figure S1: (a) Optimized structure of gt-C3N4 (top view). Unitcell represented by a red 

dashed hexagonal box. (b) Charge density plot of gt-C3N4 (top view).  
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Figure S2: Spin polarized (a) TDOS/PDOS and (b) band structure of gt-C3N4. Fermi level is 

set to zero and indicated by a black dashed line. 

Table S1: Bond lengths and net effective charges calculated from Bader Charge analysis of 

gt-C3N4 and TM@gt-C3N4 

Compound Bond length (Å) Net Effective Charge  

C  N TM 
gt-C3N4 C-Nlink = 1.46 

C-Nin = C-Nin = C-Nin = 1.33 

C-N = 1.39 (avg) 

 

    +1.45 Nlink = -0.96 

Nin = -1.19 

Nin = -1.19 

Nin = -1.01 

 

Cr@gt-C3N4 Cr-N1= 2.06 

Cr-N2= 2.08 

Cr-N3= 1.85 

Cr-N4= 2.00 

C-N1 = 1.40, 1.37 

C-N2 = 1.40, 1.37 

C-N3 = 1.29, 1.30 

C-N4 = 1.33, 1.34 

+1.11 N1 = -1.26 

N2 = -1.19 

N3 = -1.18 

N4 = -1.19 

Cr = +1.49 

Mn@gt-C3N4 Mn-N1= 2.96 

Mn-N2= 2.07 

Mn-N3= 1.97 

Mn-N4= 1.80 

C-N1 = 1.32, 1.33 

C-N2 = 1.29, 1.30 

C- N3 = 1.36, 1.44 

C-N4 = 1.49, 1.42 

+1.14 N1 = -1.45 

N2 = -1.18 

N3 = -1.18 

N4 = -1.17 

Mn =+1.54 

Fe@gt-C3N4 Fe-N1= 3.16 

Fe-N2= 2.03 

Fe-N3= 1.95 

Fe-N4= 1.75 

C-N1 = 1.33, 1.32 

C-N2 = 1.28, 1.30 

C- N3 = 1.36, 1.43 

C-N4 = 1.37, 1.41 

+1.20 N1 = -1.37 

N2 = -1.19 

N3 = -1.19 

N4 = -1.18 

Fe = +1.32 
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Text S1. Formation Energy (Ef), Binding Energy (EB) and Cohesive Energy (Ecoh) 

Calculations: 

The formation energy (Ef) is calculated for each TM embedding in the pore of gt-C3N4 

(Figure 1) using the following equation: 

Ef = [ETM@gt-C3N4 – (Egt-C3N4 + μTM)]       (1) 

where ETM@gt-C3N4 is the total energy of TM@gt-C3N4, Egt-C3N4 is the total energy of gt-C3N4 

sheet, and μTM represents the chemical potential of TM in their respective bulk structure. The 

chemical potentials of Cr (μCr), Mn (μMn), and Fe (μFe) are calculated from their most stable 

crystals such as Cr in bcc,
1
 Mn in cubic,

3
 and Fe in bcc,

3 
respectively. 

We have also calculated the binding energy (EB) of TM in the pore of gt-C3N4 using the 

following equation: 

EB = Egt-C3N4+TM – (Egt-C3N4 +ETM)       (2) 

where, ETM represents the total energy of the isolated atom. 

The cohesive energy of a solid is the energy required to dissociate the solid into their isolated 

atomic species. It is calculated by using the following equation: 

(3) 

 

Table S2: Comparison between our calculated metal-metal distances (dH = Horizontal and 

dD = Diagonal distances), binding energy, magnetic moments with previous report by Ghosh 

et al.
4
 

System TM-TM distances (Å) Formation Energy Magnetic Moment 
Calculated Previous Report Calculated Previous Report Calculated Previous Report 

Cr@gh-C3N4 dH = 7.04 

dD = 6.99 

dH = 7.05 

dD = 6.97 

-3.63 -3.65 4 4 

Mn@gh-C3N4 dH = 7.02 

dD = 7.02 

dH = 7.02 

dD = 7.01 

-4.45 -4.48 5 5 

Fe@gh-C3N4 dH = 7.04 

dD = 7.04 

dH = 7.04 

dD = 7.04 

-0.67 -0.68 4 4 

 

 

Ecoh = ESolid
 
 – 𝞢 EA

isolated
 

A 
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Figure S3: Phonon band structures and PhDOS of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4 (c) 

Fe@gt-C3N4. High-symmetric q-point paths: Γ (0, 0) → M (1/2, 1/2) → K (2/3, 1/3) → Γ (0, 

0).  

 

Figure S4: Phonon band structures and PhDOS including dielectric effect for (a) Cr@gt-C3N4, 

(b) Mn@gt-C3N4 (c) Fe@gt-C3N4. High-symmetric q-point paths: Γ (0, 0) → M (1/2, 1/2) → K 

(2/3, 1/3) → Γ (0, 0).  

 

Figure S5: Structure of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4 and (c) Fe@gt-C3N4 supercell 

(2×2) after molecular dynamics simulation after 5 ps at room temperature (300 K). 
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Figure S6: Molecular dynamics simulations of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4 and (c) 

Fe@gt-C3N4 supercell (2×2) with 5 ps (5000 fs) at different temperature (300 K, 500 K and 

1000 K). 

 

Figure S7: Structure of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4 and (c) Fe@gt-C3N4 supercell 

(3×3) after molecular dynamics simulation after 5 ps at room temperature (300 K). 

 

Figure S8: (a) Molecular dynamics simulation and (b) root mean square displacement (RMSD)  
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of Cr@gt-C3N4 supercell (3×3) with 5 ps (5000 fs) at different temperature (300 K, 500 K and 

1000 K).  

 

Figure S9: (a) Molecular dynamics simulation and (b) root mean square displacement (RMSD)  

of Mn@gt-C3N4 supercell (3×3) with 5 ps (5000 fs) at different temperature (300 K, 500 K and 

1000 K).  

 

Figure S10: (a) Molecular dynamics simulation and (b) root mean square displacement (RMSD)  

of Fe@gt-C3N4 supercell (3×3) with 5 ps (5000 fs) at different temperature (300 K, 500 K and 

1000 K).  
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Figure S11: Total electron density plots of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4, and (c) 

Fe@gt-C3N4 (Isosurface value: 0.18 e.Å
-3

). Electrostatic potentials (ESP) plots of (d) Cr@gt-

C3N4, (e) Mn@gt-C3N4, and (f) Fe@gt-C3N4 (Isosurface value: 0.03 e.Å
-3

). The blue and red 

colours denote less and more electron dense area in the electrostatic potential surface.  

     

Figure S12: Strain energy of Cr@gt-C3N4 under in-plane uniaxial and equi-biaxial strains. 
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Table S3: Calculated Young’s Modulus and Poisson’s ratio of TM@gt-C3N4 by applying 

uniaxial and equi-biaxial strain. 

 

                                                   

Figure S13: Energy diagram of d-orbital splitting of different TM@C3N4 systems. 

Compound Young’s Modulus (GPa) Poisson’s Ratio 

Cr@gt-C3N4 200.10  0.18 

Mn@gt-C3N4 49.96 0.08 

Fe@gt-C3N4                   140.99 0.04 
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Figure S14: (a) TDOS and pDOS plot of (a) Cr@gt-C3N4, (b) Mn@gt-C3N4 and (c) Fe@gt-

C3N4 (Fermi level is shifted to zero and indicated by black dashed line)  

 

Text S2. Calculation of Magnetic Anisotropy Energy (MAE) 

The magnetic anisotropy energy (MAE) is calculated by applying the torque approach.
5
 Non-

collinear self-consistent calculations (including spin orbit coupling) are performed in the z, y 

and x axis magnetization directions, respectively. MAE originates from the perpendicular and 

in plane contribution of spin orbit coupling (SOC), which can be expressed in terms of 

angular momentum operators Lx, Ly or Lz. So the contribution of different spins (up ‘↑↑’ and 

down ‘↓↓’) can be expressed by the second order perturbation equation.
6
  

𝑀𝐴𝐸 = 𝜉2 ∑
│ < 𝑜│𝐿𝑍│𝑢 > │2 −  │ < 𝑜│𝐿𝑋│𝑢 > │2

𝐸𝑢 − 𝐸𝑜
𝑜,𝑢

 

Here, o and u represent the occupied and unoccupied electronic states, respectively. The Eo 

and Eu in the denominator are their respective band energies. LZ and LX are the angular 

momentum operators along Z and X axis, and ξ denotes the strength of the SOC. So, a 



S12 
 

potential with good MAE for practical application should hold a high value of ξ.  Then, the 

MAE is calculated using the following equation:  

MAE = ES0 – ES1          (5) 

where ES0 is the energy of the materials without employing any magnetic axis and ES1 is the 

energy in presence of an easy axis.  Total energies are converged to a precision of 10
-6

 eV in 

MAE calculations. 

Text S3. Details of Mean Field Theory and Monte Carlo Simulations for Curie 

Tempareture calculations  

3.1 Mean Field Theory (MFT): 

We have taken the MFT approach to calculate the Curie tempareture for the two dimentional 

TM@gt-C3N4 systems. This method has been previously used by Li et al.
7 

for the Curie 

tempareture calculation for Mn-phthalocyanine (MnPc) system.  The main idea behind MFT 

method is to replace all interactions to any one body with an average or effective interaction.
8
 

It reduces any multi-body problem into an effective one-body problem. The detailed partition 

function can be written as follows,  

Z = ∑ 𝑒𝛾𝐽′𝑚<𝑀>/𝑘𝐵𝑇
𝑚=−𝑀,−𝑀+2,…..𝑀−2,𝑀         (4) 

Here, ‘J՜’ is the exchange parameter, ‘γ’ is the coordination number, ‘m’ is the ensemble-

average magnetic moment, and ‘M’ is the calculated magnetic moment of TM. 

Thus, the average spin of each magnet becomes, 

<m> = 
1

𝑍
∑ 𝑚 × 𝑒𝛾𝐽′𝑚<𝑀>/𝑘𝐵𝑇

𝑚=−𝑀,−𝑀+2,…..𝑀−2,𝑀      (5) 

Now, if we assume that, P = 
𝛾𝐽′

𝑘𝐵𝑇
 , then the equation 5 becomes, 

The above equation can be easily deducible when the parameter ‘P’ varies along with the 

static solution <m>. At the critical point,  



S13 
 

P = Pc = 
𝛾𝐽′

𝑘𝐵𝑇𝑐
          (6) 

At this critical point, the phase transition of the system between ferromagnetic to 

paramagnetic occurs. This critical point is known as Curie temperature. 

3.2 Monte Carlo Simulations: 

Monte Carlo simulations involve generating a subset of configurations or samples, chosen 

using a random algorithm from a configuration space, according to a probability distribution 

or weight function. Observables are then computed as averages over the samples.
9
 

One sample or configuration of the magnet is a particular assignment of spin values, say 

s1 = +1; s2 = -1; s3 = +1; ……………… ; sNs = +1     (7) 

in which each spin is set “up” or “down”. According to statistical mechanics, the average 

value of an observable is got by weighting each configuration with the Boltzmann factor. For 

example, the average magnetization at some fixed temperature T is given by, 

<M> = 
∑ 𝑀𝑒−𝐸/𝑘𝐵𝑇

𝐶𝑜𝑛𝑓𝑖𝑔

∑ 𝑒−𝐸/𝑘𝐵𝑇
𝐶𝑜𝑛𝑓𝑖𝑔

        (8) 

At the Curie temperature (Tc) we expect a marked fluctuation in the magnetic moment (M). 
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Table S4: Exchange energy (Eex) and Curie temperature value of TM@gt-C3N4 system.  

 

Compound 

Magnetic 

Moment/TM 

(μB) 

Exchange energy 

(meV)/TM 

[Eex = EFM -EAFM ] 

Energy Difference 

(meV)/TM 

(Ediff = EFM -ENSP) 

 

Curie 

Temperature 

(TC) in (K) 

MAE in (µeV)/TM 

(Magnetic 

Anisotropy 

Energy) 

Cr@gt-C3N4 4 -480.87 53.79 452 137.26  

Mn@gt-C3N4 5 -344.69 46.13 324 119.83  

Fe@gt-C3N4 4 -330.87 75.21 311 116.39  
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