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Experimental methods. 

Gold film preparation 

Slides were cleaned by sonication for 10 minutes each in; 1% Decon 90, 3-5 rinses of MilliQ water, 

then isopropanol. Then they were dried with N2, immersed in dichloromethane for 10 minutes, dried 

with N2, immersed in piranha solution (30% H2O2, 70% H2SO4) for 10 minutes, rinsed 3-5 times with 

MilliQ water, dried with N2 and mounted into an Edwards Auto 360 thermal evaporator. Thin-films 

(100 nm) of gold were evaporated onto 5 nm chromium onto the cleaned glass slides. Gold films were 

sectioned into ≈1 cm2 pieces and cleaned with isopropanol, dried with N2 before treating with 

UV/ozone (20 minutes, UVOCS) to remove surface contamination, and soaking in ethanol (40 minutes) 

to reduce the surface back to metallic Au. 

Nano-patterning using interference lithography (IL) 

An anti-biofouling SAMs were formed on clean gold surfaces by immersion in a solution of alkanethiol 

(1 mM 11-mercaptoundecyl tetra(ethylene)glycol (PEG) in ethanol) for 24 hours. The surfaces were 

removed from the SAM forming solution, rinsed in ethanol and dried under N2. Interference 

lithography was used to create nano-patterns by exposing the SAM surface to a Coherent Innova 300C 

FreD frequency doubled argon ion laser beam (λ≈244 nm, maximum power 100 mW) in a Lloyd’s 

mirror arrangement, as described in Tizazu et al.1 The laser beam was expanded to illuminate area of 

≈1 cm2, and was directed towards the surface at a fixed angle of 2θ to the mirror. The laser was 

positioned so that half of the beam interacted with the sample surface, and the other half reflected 

off the mirror onto the sample. Interference between the reflected and direct portions of the beam 

creates an exposure pattern on the SAM surface. The SAMs were exposed for 7-14 minutes to achieve 

a dose of 20-40 J cm-2, resulting in spatially defined nanoscale photo-oxidation of the SAM on the gold 

surface. 

Stamp master preparation 

Patterned stamp masters were formed by UV-photolithography of silicon substrates coated with an 

epoxy negative tone photoresist (SU8 2002, Microchem. Corp and Chestech, UK). All processing was 

performed in a class 100 cleanroom. Silicon wafers were sectioned into ≈1 cm2 pieces before cleaning 

via sonication for 2 minutes in each: acetone; MilliQ water, isopropanol; then MilliQ. Substrates were 

dried with a N2 stream and dehydrated on a hotplate (5 minutes, 150°C). Wafer sections were 

immersed in piranha solution (30% H2O2, 70% H2SO4 (v/v)) for 10 minutes before thorough rinsing in 

MilliQ water and drying with N2. SU8 photoresist was pipetted onto the cleaned silicon, and the 

surfaces spun at 2000 rpm for 100 seconds (Suss MicroTec Lithography Delta 6 RC BM AK-200.417 

controlled by a Suss MicroTec Delta +10 control unit) and cured on a hotplate (2 minutes, 95°C) to 

form an average resit thickness of 1.6 μm. The resit build up at the edges of the silicon (the edge bead) 

was then removed by abrasion. The SU8 was patterned using soft-UV light (365 nm) through a pattern 

definition mask in contact mode, using a Karl Suss MJB-3 UV mask aligner. The lamp power of the 

mask aligner was optimised so that the exposure time provided an optimal dose of 21 mJ cm-2 to the 

photoresist. After exposure, the substrates were baked on a hotplate (2 minutes, 95°C), and then 

gradually cooled to room temperature. The exposed substrates were then developed in an EC11 

solution (Microchem) for 1 minute, rinsed in isopropanol and dried under N2. The patterned masters 

were then hard baked on a hotplate (10 minutes, 150°C). Cooled masters were rinsed in isopropanol, 
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dried under N2, then silanised by evaporating a few drops of a fluorinated silane (1H, 1H, 2H, 2H 

perfluorooctyltriethoxysilane) onto the micro-patterned surface to create a hydrophobic coating. 

Micro-contact printing (μCP) 

Patterned masters on silicon were cleaned with propanol and dried with N2. Poly dimethyl siloxane 

(PDMS, Sylguard 184 base with w/w 10 % curing agent) was thoroughly mixed, poured over the 

master, and bubbles removed by degassing under vacuum. The PDMS elastomer was cured overnight 

(16 hours) at 60°C before the stamps were cut out and soaked in ethanol overnight (16 hours). Stamps 

were dried with N2 and inked with an anti-biofouling SAM forming alkanethiol (5 mM 11-

mercaptoundecyl tetra(ethylene)glycol (PEG) in ethanol) for 4 minutes. Excess alkanethiol solution 

was removed via pipette and the stamp thoroughly dried under N2 prior to micro-contact printing 

(μCP) onto clean gold surfaces. The stamp was conformally contacted onto the clean gold surface for 

4 minutes and then removed before functionalising with the biotemplating cysteine tagged peptide. 

Peptide functionalisation of surface 

A clean gold surface (unpatterned), a micro-contact printed surface (μCP,) or an interference 

lithographically patterned surface (IL) was immersed in a solution of 20 μg mL-1 of the cys_CoPt 

biotemplating peptide (C-GSG-KTHEIHSPLLHK, Genscript, > 95% purity) in phosphate buffered saline (PBS 

from Invitrogen: 10 mM sodium phosphate, 2.68 mM KCl, 140 mM NaCl, pH 7.4). After 1 hour, the 

substrates were rinsed in water and placed into a water jacketed glass reaction vessel. The sulfur in 

the cysteine at the N-terminus of the peptide has a strong affinity for gold surface binding. This 

backfilling with the biotemplating peptide creates areas of the surface that resist (PEG SAM) or 

promote (cys_CoPt) biotemplated mineralisation.  

Biotemplated mineralisation 

Solutions of cobalt sulfate (Co2+, 30 mM CoSO4·7H2O, 126.5 mg in 15 mL) and sodium 

tetrachloroplatinate (Pt2+, 10 mM Na2PtCl4, 57.4 mg in 15 mL) salts were prepared in deoxygenated 

MilliQ water (vacuum degassed for >1 hour and sparged with N2 gas for >1 hour). The reducing agent 

(sodium borohydride, 25 mM, NaBH4, 28.5 mg in 30 mL) was also prepared in anoxic water just prior 

to use. 2.5 mL Co2+ and 2.5 mL Pt2+ were added to the peptide patterned gold substrate and incubated 

for 5 minutes at 18°C. Cooling was maintained using recirculated water. For the bulk peptide control, 

100 μL of a 1 mg mL-1 peptide solution (10 μg mL-1 in the 10 mL reaction) in PBS was added in place of 

the peptide patterned substrate. N2 was flowed through the solutions for the duration of the 

mineralisation. 5.0 mL of NaBH4 was injected into the reaction vessel. The pink-yellow salt solution is 

reduced to black metallic particles, both in the bulk solution and onto the peptide immobilised on the 

gold surface. Biotemplated surfaces were removed from the excess reactants and products after 

≈45 minutes, and rinsed 3-5 times in anoxic water and dried with N2. 

Electron microscopy 

A Hitachi SU8230 cold field emission (CFE) scanning electron microscope (SEM) was used to image 

samples at 2-15 keV via the in lens SE(U) detector. Energy dispersive X-ray (EDX) spectra were 

recorded using an Oxford Instruments AZtecEnergy EDX system on the SEM at 15 keV. A Phillips 

CM200(FEG)TEM (transmission electron microscope) was used to image bulk precipitated samples 

dried onto carbon coated copper grids at 200 keV, using the digital micrograph software. EDX spectra 
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were recorded using an Oxford Instruments INCA EDX system and Gatan Imaging Filter. ImageJ2 was 

used to record the average width of the nano- and micro-patterns (20 measurements perpendicular 

to the line pattern), error quoted is the standard deviation of these measurements. ImageJ was also 

used to record the length and width of ≈400 particles for each sample. The average diameter for each 

particle was binned into ≈20 bins and fitted with Gaussian distributions in Origin: 

𝑦 = 𝑦0 +
𝐴

𝑤√𝜋/2
𝑒
−2(𝑥−𝑥𝑐)

2

𝑤2  

Where y0 is the offset, xc is the centre, w is the width and A the amplitude of the symmetric peak. The 

aspect ratio was also binned into ≈20 bins, and fitted with asymmetric distributions using the Extreme 

fitting tool in Origin: 

𝑦 = 𝑦0 + 𝐴𝑒(−𝑒
(−𝑧)−𝑧+1) 

𝑧 = (𝑥 − 𝑥𝑐)/𝑤 

Where y0 is the offset, xc is the centre, w is the width and A the amplitude of the asymmetric peak. 

The average aspect ratio (error one standard deviation) was also calculated. 

X-ray diffraction (XRD) 

A Brucker-AXS D8 series2 diffractometer set to a Bragg Brentano Parafocussing Geometry was used 

to record diffraction spectra. X-rays were generated using a Cu-Kα source at 40 kV at room 

temperature. Monochromated X-rays were passed through a 2 mm exit slit and an automatic 

divergence slit of 0.2°. Diffraction intensity was collected at angles of 2θ between 2° and 80° on a 

Braun position sensitive detector (0.02° and 6.0 seconds per step). These diffraction data were 

processed using AXS Commander and EVA software. 

Vibrating sample magnetometry (VSM) 

The biomineralised sample was mounted and centered to maximise the signal from the magnetic 

surface to the detector. Hysteresis loops were measured with the field perpendicular and parallel to 

the surface with a Microsense Model 10 vector VSM, using an applied field of -5 to 5 kOe at a sweep 

rate of 500 Oe s-1 at 295 K. 

Magneto-optical Kerr effect (MOKE) 

Measurements were taken in the polar and longitudinal geometries. A HeNe laser (λ=633 nm) was 

directed through a polariser onto the sample at an incident angle of 0° (polar) or ~30° (longitudinal) 

from the surface normal. A magnetic field of up to 6 kOe can be applied out-of-plane (polar) or at any 

angle in the plane (longitudinal). The polarisation of the light rotates as it is reflected from the 

ferromagnetic material. The change in the Kerr signal during a field sweep is measured by passing the 

light through a second polariser and measuring the change in intensity incident on a photodiode. Polar 

MOKE is sensitive only to the out-of-plane component of magnetisation, whereas longitudinal MOKE 

is sensitive to the in-plane magnetisation along the direction defined by the applied in-plane field. 

Magnetic force microscopy (MFM) 

Force microscopy plots were recorded using MFM tips (Cr/Co coated MESP probes, Brucker). These 

tips were magnetised parallel to the long axis of the tip (i.e. perpendicular to the surface) before 

mounting onto the piezohead of a Multimode Nanoscope III. To obtain maps of both topography and 
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magnetic interactions, the Nanoscope software was used to position the detection at the center of 

the resonant frequency of the cantilever and at a phase shift of 0°. The surface topography was 

recorded in tapping mode at the resonant frequency of the cantilever. This height trace was then 

followed in non-contact mode at a lift height above the height of the particles (25-50 nm) to minimise 

impacts, and thus record magnetic interactions as positive (repulsion) and negative (attraction) phase 

shifts in the resonance of the cantilever. By selecting an appropriate lift height, phase information can 

be attributed to the magnetised tip interacting with the magnetic particles on the surface rather than 

artefacts introduced by the tip contacting the surface. These MFM data were processed (flattened and 

scale limits set) using WSxM3 and Nanoscope Analysis v1.50, and 3D plots generated in ‘R’ using the 

rgl package. 3D rendering script available at: https://github.com/jonbramble/MFMPlot. 

Supplementary Figures 

 

Fig. S1. Diagram to show pattern generation by interference lithography (IL)1. On the left is a sketch 

of a typical intensity profile that is generated by the constructive and destructive interference of the 

laser. This interference is generated by a Lloyd’s mirror arrangement, shown on the right. Areas of 

constructive interference on the surface remove an adsorbed self-assembled monolayer (SAM), 

whereas areas of destructive interference leave the SAM intact to create nano-lines on the surface. 

 

Fig. S2. Scanning electron microscope (SEM) images of biotemplated patterned lines, biomineralised 

at 18°C at (a) low, (b) medium and (c) high magnifications. Lines of dark contrast are the gold surface 

that was protected against biomineralisation by the μCP PEG thiol. Lines of light contrast were 

backfilled with the biotemplating cys_CoPt peptide before metallisation with CoPt, and are covered in 

a biotemplated layer of MNPs. Scale bars (a) 100 μm, (b) 20 μm, and (c) 2 μm. 

https://github.com/jonbramble/MFMPlot
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Fig. S3. Scanning electron microscope (SEM) images of biotemplated patterned squares, 

biomineralised at 18°C at (a) low, and (b) high magnifications. Light contrast squares are peptide 

biotemplated CoPt MNPs, dark contrast background is protected against metallisation by μCP PEG 

thiol. Scale bars (a) 10 μm and (b) 2 μm. 

 

Fig. S4. Scanning electron microscope images (SEM) of biotemplated patterned lines metallised at a 

higher temperature of ≈35°C. (a) The areas functionalised with the cys_CoPt biotemplating peptide 

(dark contrast) are unable to template MNPs. At higher magnification (b) the biotemplating areas can 

be seen to be coated in a thin discontinuous layer of black and white speckling. It is likely that the 

higher temperatures in the lab in summer significantly increased the rate of the metallisation reaction. 

The higher temperatures may also have reduced the solubility of CoPt MNP precursors and/or 

inhibited the ability of the CoPt biotemplating peptide immobilised on the surface to bind to the 

forming particles. For any or all of these reasons, the biotemplating peptide is not able to control the 

mineralisation of MNPs onto surfaces at 35˚C, but instead forms this thin, discontinuous film. Scale 

bars (a) 100 μm and (b) 1 μm.  
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Fig. S5. Energy dispersive X-ray (EDX) spectra from the powder control samples recorded in the TEM. 

All samples show peaks that pertain to the formvar carbon coated copper grids (Cu, C, O, Si), and 

chlorine is probably from the buffer the peptide was stored in (PBS). The non-peptide bulk templated 

particles (blue) also show peaks for Co and Pt, with quantification showing atomic percentage ratio of 

25:75. Quantification of the non-cysteine tagged peptide bulk templated particles (green) Co:Pt is 

88:12, and the cys_CoPt bulk templated particles (orange) is 59:41. The stoichiometry of Co:Pt in the 

metallisation solution was 75:25, and the ideal ratio for L10 CoPt is 50:50. Despite the large excess of 

Co in the mineralisation solution, the bulk precipitated particles are dominated by Pt, so much of the 

Co must remain unreacted in the solution. It is likely that much of the Co detected in the peptide 

templated samples may be bound by the organic peptide matrix. As there was no detection of Co 

reflections in the SAED (see Fig. S7 below), this indicates that the peptide is able to bind cobalt well, 

and may form an amorphous or poorly crystalline cobalt phase that can be seen to surround the MNPs. 
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Fig. S6. X-ray diffraction (XRD) data for the powder controls. Bulk precipitated (blue), bulk peptide 

biotemplated (green) and bulk cysteine tagged peptide biotemplated (orange) powders show strong 

peaks for CoPt3 rather than the CoPt L10 structures. There are also two peaks, labelled with asterisks 

(*) that are likely to be due to carbon in this biotemplated sample. Scans are vertically offset for clarity, 

and details of peak assignments are shown in Table S1. 
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Table S1. Peak positions, corresponding d-spacing and peak assignments for surfaces (see Fig. 4f) 

and powder controls (see Fig. S6). The measured peak positions are converted to d-spacings using 

Bragg’s Law (𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃), where n is 1, λ is the wavelength of the incident X-rays (1.5406 Å), d is 

the spacing between the planes in Å, and θ is the angle between the incident ray and the scattering 

planes. The material and hkl lattice spacings are assigned based on the closest match between the 

measured spectra and standard spectra in the JCPDS data base. 

sample 2θ (°) dmeasured (Å) 
dreference 
(Å) 

compound name h k l formula JCPDS No. 

bulk 40.54 2.22 2.22 cobalt platinum 1 1 1 CoPt3 00-029-0499 

47.09 1.93 1.93 cobalt platinum 2 0 0 CoPt3 00-029-0499 

68.97 1.36 1.36 cobalt platinum 2 2 0 CoPt3 00-029-0499 

peptide 
bulk 

26.61 3.35 - carbon - - - C Wang et al. 
(2012)4  27.54 3.24 - carbon - - - C 

40.73 2.21 2.22 cobalt platinum 1 1 1 CoPt3 00-029-0499 

47.09 1.93 1.93 cobalt platinum 2 0 0 CoPt3 00-029-0499 

69.24 1.36 1.36 cobalt platinum 2 2 0 CoPt3 00-029-0499 

cysteine 
tagged 
peptide 

40.83 2.21 2.22 cobalt platinum 1 1 1 CoPt3 00-029-0499 

47.27 1.92 1.93 cobalt platinum 2 0 0 CoPt3 00-029-0499 

69.24 1.36 1.36 cobalt platinum 2 2 0 CoPt3 00-029-0499 

clean 
gold 
surface 

38.30 2.35 2.36 gold FCC 1 1 1 Au 00-004-0784 

44.56 2.03 2.04 gold FCC 2 0 0 Au 00-004-0784 

64.78 1.44 1.44 gold FCC 2 2 0 Au 00-004-0784 

77.77 1.23 1.23 gold FCC 3 1 1 Au 00-004-0784 

81.82 1.18 1.18 gold FCC 2 2 2 Au 00-004-0784 

cysteine 
tagged 
peptide 
on 
surface 

23.99 3.71 3.68 L10 cobalt platinum 0 0 1 CoPt 00-029-04985 

29.00 3.08 - carbon - - - C Wang et al. 
(2012)4 29.65 3.01 - carbon - - - C 

38.34 2.35 2.36 gold FCC 1 1 1 Au 00-004-0784 

40.79 2.21 2.17 L10 cobalt platinum 1 0 1 CoPt 00-029-0498 

44.53 2.03 2.04 gold FCC 2 0 0 Au 00-004-0784 

47.51 1.91 1.90 L10 cobalt platinum 1 1 0 CoPt 00-029-0498 

64.74 1.44 1.44 gold FCC 2 2 0 Au 00-004-0784 

77.70 1.23 1.23 gold FCC 3 1 1 Au 00-004-0784 

81.82 1.18 1.18 gold FCC 2 2 2 Au 00-004-0784 
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Fig. S7. Transmission electron microscope (TEM) and selected area electron diffraction (SAED) of the 

controls for the biotemplated surface MNPs. The TEM images (a, c & e) show clusters of multiple 

particles, which are likely self-assembled due to magnetic interactions between the particles. This 

made imaging and diffraction on these samples difficult. (a) TEM image of bulk precipitated particles 

in the absence of any biotemplating peptide (bulk) and (b) SAED pattern showing reflections for A1 

CoPt. (c) TEM image of MNPs templated with a non-cysteine tagged version of the CoPt peptide in the 

bulk solution (peptide), with the particles imbedded in a matrix of material that looks like it is organic. 

(d) SAED pattern from this sample, showing reflections for CoPt3 (111) and A1 CoPt (112) and (212). 

(e) TEM image of MNPs templated by the cysteine tagged CoPt templating peptide in the bulk solution 

(cys_CoPt), again the particles seem to be embedded in a matrix that looks like organic material. (f) 

SAED diffraction pattern from the cys_CoPt peptide in the bulk solution templated particles, showing 

L10 CoPt reflections (003) and A1 reflections (212) and (301). Details of indexing is shown in Table S2. 

Scale bars 50 nm.  
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Table S2. Table to show indexing of SAED patterns shown in Fig. S7 above. For each sample, the 

measured radius (r) has been converted to a d spacing using (𝑑 =
𝜆𝑙

𝑟
), where λ is the wavelength of 

the electrons (0.025 mm) and l is the camera length (170 mm). The material and hkl lattice planes have 

been assigned based on comparison of the measured d-spacing to standards from the JCPDS data 

base, which are also shown. 

sample r (1/nm) 
d (Å) 
measured 

d (Å) 
nearest 

sample name h k l formula JCPDS No. 

b
u

lk
 

4.18 1.02 1.00 
cobalt 
platinum 

2 1 2 CoPt 00-029-0498 

4.87 0.87 0.87 
cobalt 
platinum 

3 0 1 CoPt 00-029-0498 

6.87 0.62 - n/a - - - - - 

8.07 0.53 - n/a - - - - - 

10.66 0.40 - n/a - - - - - 

p
ep

ti
d

e
 

1.90 2.24 2.22 
cobalt 
platinum 

1 1 1 CoPt3 00-029-0499 

3.27 1.30 1.32 
cobalt 
platinum 

1 1 2 CoPt 00-029-0498 

4.15 1.02 1.00 
cobalt 
platinum 

2 1 2 CoPt 00-029-0498 

6.05 0.70  n/a - - - - - 

cy
s_

C
o

P
t 

3.46 1.23 1.23 
cobalt 
platinum 

0 0 3 CoPt 00-029-0498 

4.19 1.01 1.00 
cobalt 
platinum 

2 1 2 CoPt 00-029-0498 

4.84 0.88 0.87 
cobalt 
platinum 

3 0 1 CoPt 00-029-0498 

6.89 0.62  n/a - - - - - 
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Fig. S8. Vibrating sample magnetometry (VSM) measurements of a biotemplated CoPt surface. Loops 

were recorded with the field applied perpendicular (red) or parallel (black) to the sample surface. The 

lower gradient (loop shear) seen in the perpendicular loop (red) may be due to shape anisotropy of 

the film contributing to demagnetising effects. 
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Fig. S9. Magneto-optical Kerr effect (MOKE) measurements of a biotemplated CoPt surface. There is 

little difference between the width of the hysteresis loops (the coercivity) measured perpendicular 

(red) or parallel (black) to the sample surface. The loop shear seen in the perpendicular VSM 

measurements (Fig. S8) is also observed in these MOKE measurements. 
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Fig. S10. Hysteresis loops recorded using MOKE on biotemplated surfaces formed (a) perpendicular 

and (b) parallel to a 0.2 T DC field. The loops show that the samples are ferromagnetic, but have low 

coercivity. Samples biomineralised with the field applied out-of-plane (oop, (a)) and in-plane (ip, (b)). 

The hysteresis loops were recorded at 90˚ to the surface (polar) and then parallel to the surface at 

two different angles (longitudinal 0˚ and 90˚) to measure the magnetic response of the surfaces in the 

x, y, and z planes. Again, the MNPs have a more rapid switching when the field is applied in-plane for 

the measurements when compared to it being applied out-of-plane. 
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Fig. S11. Scanning electron microscopy (SEM) of unpatterned biotemplated surfaces metallised in 

the presence of an applied field of 0.2 T. (a & b) Biotemplated CoPt MNPs formed when the field is 

applied parallel to the surface during mineralisation. (c & d) Biotemplated CoPt formed when the field 

is applied perpendicular to the surface during mineralisation. Scale bars (a & c) 2 μm and (b & d) 

200 nm. 

Supplementary discussion of Fig. S11: 

Mineralisation in an applied field was unable to align the L10 c-axis. To try and align the particles with 

the c-axis perpendicular to the film, we performed the mineralisation in the presence of an applied 

magnetic field. A 0.2 T DC field was applied either perpendicular or parallel to unpatterned 

biotemplating surfaces for the duration of the mineralisation reaction (the stages shown in Fig. 1e-f). 

MOKE measurements on these surfaces showing no increase in coercivity (Fig. S10). However, Fig. S11 

shows that the samples mineralised with the surface parallel to the field look identical to those formed 

with no applied field (Fig. 2). Those metallised with the field perpendicular to the biotemplating 

surface are cleaner (i.e. have less adsorbed supra-particles), but the MNPs are more patchily 

distributed on the surface. We continued this study on those samples mineralised in the absence of 

an applied field, to ensure a consistent layer of biotemplated MNPs, since discontinuous layers are 

undesirable for data storage applications. 
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Fig. S12. Separate magnetic force microscopy (MFM) of nano-patterned surfaces. (a & b) Tapping 

mode height, and (c & d) the respective phase contrast due to magnetic interactions between the 

magnetised tip and the IL nano-patterned MNPs biotemplated onto the surface. The magnetic 

nanoparticles show mainly repulsion ( ) that extend across multiple MNPs on the surface. These 

same plots are shown combined in Fig. 5a & b. 
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Fig. S13. Separate MFM of micro-patterned surfaces. Separated scans to show the height contrast (a 

& b) and corresponding phase contrast in non-contact mode (c & d) of the μCP MFM plots also shown 

in Fig. 5c & d. 25 μm2 scan area of biotemplated μCP CoPt line patterned surface, a topography 

recorded in tapping mode and c phase shift recorded at a lift height of 50 nm. There is significant 

attraction of a few degrees between the magnetised tip and the patterned biotemplated CoPt MNPs. 

5 μm2 scan area (b) topography and (d) phase contrast recorded at a lift height of 50 nm and a 90° 

angle to image (a). Here, the gold substrate appears as close to zero (i.e. non-magnetic) in the phase 

shift when compared to the MNPs. The magnetic nanoparticles clearly show zones of attraction (dark) 

and repulsion ( ) that extend across multiple MNPs on the surface. 
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Fig. S14. Combined MFM plots of same area of line micro-patterned biotemplated CoPt MNPs, 

scanned at a 45° angle to the line pattern. (a & b) colour keys to show phase shift in plots (c & d) 

respectively A negative phase shift indicates attraction (red) between the tip and the surface, and a 

positive phase shift indicates repulsion (blue). (c) 2 μm2 scan area of biotemplated CoPt surface, 

topography recorded in tapping mode and phase shift recorded at a lift height of 30 nm. (d) 2 μm2 

scan of the same area recorded at a lift height of 30 nm with the scan direction rotated by 90°. Both 

plots show similar zones of attraction and repulsion that extend across multiple MNPs on the surface, 

parallel to the long axis of the line pattern. These are shown as separated height and magnetic plots 

in Fig. S15.  
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Fig. S15. Separate MFM plots of the same area of line micro-patterned biotemplated CoPt MNPs, 

scanned at + and - 45° angle to the line pattern, also shown in Fig. S14 as combined plots. (a & b) 

Height plots recorded in tapping mode at a 90˚C angle to each other, and (c & d) the respective phase 

contrast recorded at a lift height of 30 nm. Arrows indicate the direction of the long axis of the micro-

patterned lines on the surface. The magnetic nanoparticles show zones of attraction (dark) and 

repulsion ( ) that extend across multiple MNPs on the surface. Magnetic phase contrast appears 

to align with the long axis of the pattern, indicating that shape anisotropy of the assembly influences 

the magnetic alignment of the biotemplate MNPs.  
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Fig. S16. Combined MFM plots of biotemplated CoPt micro-patterned surface. (a & b) colour keys to 

show phase shift in plots (c & d) respectively A negative phase shift indicates attraction (red) between 

the tip and the surface, and a positive phase shift indicates repulsion (blue). (c) 5 μm2 scan area of 

biotemplated CoPt line patterned surface, topography recorded in tapping mode and phase shift 

recorded at a lift height of 50 nm, green area highlights area scanned for image (d). d, 2 μm2 scan area 

recorded at a lift height of 30 nm and a 90° angle to image (c). Again, both plots clearly show zones of 

attraction and repulsion that extend across multiple MNPs on the surface. Again, these zones appear 

to run roughly parallel to the long axis of the patterned biotemplated lines, even when the scale of 

the image and the scan direction is changed. These are shown as separate height and magnetic 

contrast plots in Fig. S17. 
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Fig. S17. Separate MFM plots of micro-patterned surfaces. (a & b) Tapping mode height, and (c & d) 

the respective phase contrast due to magnetic interactions between the magnetised tip and the MNPs 

biotemplated onto the surface. The magnetic nanoparticles show significant zones of attraction (dark) 

and repulsion ( ) that extend across multiple MNPs on the surface. These same plots are shown 

combined in Fig. S16. 
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Fig. S18. Combined MFM plots of biotemplated CoPt unpatterned surface. (a & b) colour keys to 

show phase shift in plots (c & d) respectively A negative phase shift indicates attraction (red) between 

the tip and the surface, and a positive phase shift indicates repulsion (blue). (c) 10 μm2 scan area of 

biotemplated CoPt surface, topography recorded in tapping mode and phase shift recorded at a lift 

height of 50 nm. (d) 2 μm2 scan area recorded at a lift height of 30 nm. Both plots clearly show zones 

of attraction and repulsion that extend across multiple MNPs on the surface. These appear to wider 

than those observed on the biotemplated lines pattern. They also do not appear to have any preferred 

alignment or orientation. These are shown as separate height and magnetic plots in Fig. S19. 
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Fig. S19. Separate MFM plots of unpatterned biotemplated CoPt surfaces. (a & b) Tapping mode 

height, and (c & d) the respective phase contrast due to magnetic interactions between the tip and 

the unpatterned MNPs biotemplated onto the surface. The magnetic nanoparticles show significant 

zones of attraction (dark) and repulsion ( ) that extend across multiple MNPs on the surface. These 

same plots are shown combined in Fig. S18. 
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