Electronic Supplementary Information (ESI) for

Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors

Longfei Lv,^{a,b} Yibing Xu,^b Hehai Fang,^c Wenjin Luo,^c Fangjie Xu,^b Limin Liu,^b Biwei Wang,^b Xianfeng Zhang,^a Dong Yang,^{*a} Weida Hu^{*c} and Angang Dong^{*b}

^aState Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, and Department of Macromolecular Science, Fudan University, Shanghai 200433, China. ^bCollaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai 200433, China. ^cNational Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.

*To whom correspondence should be addressed: <u>agdong@fudan.edu.cn</u>(A.D.); <u>wdhu@mail.sitp.ac.cn</u>(W.H.); <u>yangdong@fudan.edu.cn</u>(Y.D.)

Figure S1. (a, b) TEM images of the CsPbBr₃ products formed after 5 s and 5 min of reaction, respectively.

Figure S2. (a) AFM image of CsPbBr₃ nanosheets synthesized at 120 °C. The sheet thickness was determined to be ~ 3 nm. (b) AFM image of CsPbBr₃ nanosheets synthesized at 150 °C. The sheet thickness was determined to be ~ 2 nm.

Figure S3. TEM image of CsPbBr₃ nanoplatelets synthesized at 170 °C.

Figure S4. TEM image of $CsPbI_3$ nanosheets and nanocube by-products without reducing the OA/OAm amounts.

Figure S5. (a) XRD patterns of CsPbI₃ nanosheets and the standard cubic phase CsPbI₃. The diffraction peaks ascribed to the orthorhombic phase CsPbI₃ were indicated by asterisks. The inset shows the sample after XRD data collection, in which the light yellowish color suggested the partial conversion of CsPbI₃ nanosheets despite the short period of exposure (~ 30 min). (b) XRD patterns of CsPbI₃ nanosheets after prolonged exposure and the standard orthorhombic phase CsPbI₃. The inset shows the sample after exposure to air for 2 h, showing the complete transition of CsPbI₃ from cubic to orthorhombic phase (yellow phase).

Figure S6. (a) XRD pattern of CsPbClBr₂ nanosheets, suggesting that the mixed halide perovskite nanosheets is primarily occupied by tetragonal phase. (b) XRD pattern of CsPbBr₂I nanosheets suggesting the mixed halide perovskite nanosheets is primarily occupied by orthorhombic phase.

Figure S7. TEM images of CsPbBr₃ nanosheets, showing some nanosheets with missing corners.