Electronic Supporting Information

Unraveling the aggregation effect on amorphous phase AIE

luminogens: A computational study

Xiaoyan Zheng^a, Qian Peng^{b,*} Lizhe Zhu^a, Yujun Xie^c, Xuhui Huang^{a,*}, Zhigang Shuai^{d,*}

^aDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

^bKey Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^cDepartment of Chemistry, Wuhan University, Wuhan 430072, P.R. China

^dKey Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

Corresponding Author

- * qpeng@iccas.ac.cn
- * xuhuihuang@ust.hk
- * zgshuai@tsinghua.edu.cn

Contents

I. Supplementary methods

- 1.1 Details of force field setup
- 1.2 Force field validation
- 1.3 Definition of asphericity parameter (Ap)
- 1.4 Details of QM/MM calculations
- 1.5 Reorganization energy (λ) calculations

II. Supplementary Discussions

Amorphous HPS aggregates formation process

III. Supplementary Tables S1-S6

Table S1: The optimized structural parameters of the representative embedded HPS molecules

Table S2: The optimized structural parameters of the representative exposed HPS molecules

Table S3: The averaged energies of HOMO, LUMO and the corresponding energy gaps (ΔE_{L-H})

Table S4: The calculated peak values of the vibrationally resolved absorption and emission spectra

Table S5: The calculated adiabatic excitation energy (ΔE), oscillator strength (*f*), the electric transition dipole moment (EDM), and the assignment of S₁ of representative HPS molecules in amorphous HPS aggregates

IV. Supplementary Figures S1-S7

Figure S1: The molecular structure of HPS

Figure S2: The dihedral angles parameters fitting for Si in HPS

Figure S3. The initial configuration of HPS supercell and the comparison of packing density between experiment and MD calculations

Figure S4: Snapshots extracted from MD trajectories to show the aggregation process

Figure S5: Time evolution of the average number of water molecules around HPS aggregates

Figure S6: Time evolution of the average surface area of HPS aggregates

Figure S7: Time evolution of the average volume of HPS aggregates

Figure S8: The radical distribution functions (RDFs) of HPS aggregates

V. Supplementary force filed parameters of HPS

I. Supplementary methods

1.1 Details of force field setup

All our MD simulations in this work were performed by GROMACS-4.5.4 package¹. Excepting for Si atom in HPS molecule, all atom types and their structural parameters were taken from the general amber force field (GAFF)². Due to the absent parameters for Si in GAFF, the force field parameters for Si atom were dealt separately as follows. We took the equilibrium bond lengths and bond angles involved Si atom from HPS crystal structure directly³. And the corresponding force constants of the bond stretching and angle bending were borrowed from the *sp*³-hybridized carbon^{4,5}. Due to the key roles of dihedral angles in AIE effects, we fitted the related dihedral angles by using quantum mechanism (QM) and molecular mechanism (MM) methods as follows. First, we truncated the representative fragment from HPS molecule (see Fig. S2a) and performed geometry optimization at B3LYP/6-31G* level⁶ using Gaussian09 package⁷. Second, we scanned the dihedral angle C1-Si2-C3-C4 of this fragment at 5° interval and did geometry optimization at each step by QM method to obtain the QM energy profile (see Fig. S2b, blue). Third, we used the MM method to calculate the corresponding MM energy profile with each optimized structure obtained from QM calculation. Fourth, we fitted the energy difference between QM and MM energy profiles versus the dihedral angle using the Ryckaert-Bellemans function⁸ to obtain new parameters of the dihedral angle. Then, we repeated steps 3 and 4 iteratively to optimize the dihedral angle parameters until the difference between QM and MM energy profiles within a threshold. It is obvious that the final obtained MM energy profile could well reproduce the QM energy profile, as shown in Fig. S2b. In addition, the non-bonded Lennard-Jones parameters of radius and well-depth for Si atom were assigned as 2.220 Å and 0.320 kcal/mol, respectively⁹. Here, the partial charge of all atoms in for both the fragment and HPS molecule were obtained by using the restrained electrostatic potential (RESP) fit method^{10,11} at HF/6-31G* level¹². The force field parameters for water were TIP3P¹³.

1.2 Details of Force field validation

To validate the force filed parameters used here, we performed MD simulations of HPS molecular crystal³. The parameters of HPS unit cell were a = 9.53 Å, b = 10.04 Å, c = 16.31 Å, a = 77.150, $\beta = 79.580$, $\gamma = 71.981$. We constructed the triclinic supercell of HPS with size $5 \times 5 \times 5$ in the *a*, *b*, and *c* dimensions by a replication of the original unit cell and used this supercell as the initial configuration for HPS crystal simulations (see Figure S3a). Then, we performed energy

minimization, followed by 2 ns equilibrium simulations with position restrains in three dimensions for all heavy atoms in the HPS supercell under NVT (T = 300 K) ensemble with temperature annealed from 50 to 300 K in the first 1 ns. Finally, we performed five independent 20 ns production MD simulations with different initial velocities under the NPT (T = 300 K and P = 1 bar) ensemble. The temperature and pressure were controlled by the velocity rescaling thermostat¹⁴ and Berendsen barostat^{15,16} respectively. The time constants of couplings for both temperature and pressure were 1.0 ps. For the electrostatic interactions, the reciprocal space summation was evaluated by the particle mesh Ewald (PME) method^{17,18}. The direct space summation was computed at a cutoff distance of 1.2 nm. The cutoff distance for VDW interactions was 1.1 nm. All bond lengths were constrained via the LINCS algorithm¹⁹. Periodic boundary condition was applied in all three directions to minimize the edge effects in a finite system. Here, the time step of the HPS supercell simulation was 0.5 fs. The configurations were stored at a time interval 20 ps for the packing density calculations. In total, we collected 5000 MD conformations and calculated the packing density of each conformation. The obtained average packing density of HPS molecular crystal by MD simulations was 1260 g/L, with standard error of 6 g/L, which is highly similar to the experimental measurement (1246 g/L), see details in Figure S3b. These results demonstrated the applicability of our force field to the current study of amorphous HPS aggregates.

1.3 Definition of asphericity parameter (Ap)

To describe the aggregates morphology, we defined the asphericity parameter $(Ap)^{20-24}$. The definition of Ap is: $Ap = \frac{(\lambda_1^2 - \lambda_2^2)^2 + (\lambda_1^2 - \lambda_3^2)^2 + (\lambda_3^2 - \lambda_2^2)^2}{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)^2}$, where λ_1 , λ_2 , λ_3 are three eigenvalues of the

radius of gyration tensor A of the aggregate. The radius of gyration tensor A was $A = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix}$,

where $S_{xx} = \frac{1}{n} \sum_{i} (x_i - x_c)^2$, $S_{xy} = \frac{1}{n} \sum_{i} (x_i - x_c) (y_i - y_c)$. And, *n* represents the total number of atoms of the aggregate; x_i and x_c represent the coordinates of the *i*th atom and the center of mass of the aggregate, respectively. When Ap equals to 0, the aggregate morphology is a perfect sphere, while Ap is 1, it denotes a rod.

1.4 Details of QM/MM calculations

During the QM/MM calculations, the force field parameters for MM part were the same as those in

MD simulations. In QM region, the geometry optimization and frequency calculations for the ground (S_0) and excited (S_1) states of HPS molecule in QM region were performed at DFT/B3LYP/SV(P)²⁵ and TDDFT/B3LYP/SV(P) levels, respectively. Here, the electrostatic embedding scheme^{26,27} was used in the QM/MM calculation. Specifically, the partial charge of each atom in MM region was incorporated into the one-electron part of the QM Hamiltonian and the QM/MM electrostatic interactions can be evaluated by the electrostatic potential of QM region and the partial charge in MM region. Thus, QM region could reflect the electronic states properties while MM region could take into account the environment effects. Here, the intermolecular charge transfer was neglected due to the larger intermolecular distances in amorphous HPS aggregates⁵. In addition, during the QM/MM geometry optimization, only atoms in QM region were free to relax, the others in MM region were frozen. We chose the numerical two-point displacement method to calculate the vibrational frequency, and the polarization effect of environment was included. Here, the absence of imaginary frequency for all conformations was carefully checked. No symmetric constraints were imposed during optimization.

1.5 Reorganization energy (λ) calculations

The reorganization energy (λ) is calculated by normal mode analysis^{28,29}, which is proved to be reasonable for describing HPS molecule^{4,5}. Based on harmonic oscillator approximation, we used a

summation over all normal modes:
$$\lambda_{gs} = \sum_{k=1}^{3n} \lambda_{gs,k} = \sum_{k=1}^{3n} \frac{1}{2} \omega_{gs,k}^2 \Delta D_k^2$$
 and $\lambda_{es} = \sum_{k=1}^{3n} \lambda_{es,k} = \sum_{k=1}^{3n} \frac{1}{2} \omega_{es,k}^2 \Delta D_k^2$ to

describe λ of the ground/excited states ($\lambda_{gs}/\lambda_{es}$), where $\omega_{gs(es),k}$ is frequency of the k^{th} normal mode at ground (excited) state, and ΔD_k represents the displacement of the k^{th} normal mode along coordinates between minima of two states.

II. Supplementary discussions

Amorphous HPS aggregates formation process

To mimic amorphous HPS aggregates, we first performed the large-scale MD simulations to obtain the various conformations in aqueous solution. Our MD simulations are sufficiently long for HPS to reach stable amorphous states. The aggregation processes of HPS are illustrated by the representative snapshots extracted from one of each five MD trajectories for systems at different concentrations (see Fig. S3). Take the system with 60 HPS molecules for example, we observed that within 1 ns HPS monomers cluster into small and loosely packed aggregates, which further merge quickly into a large loosely packed aggregate (see the snapshot at 5 ns of Fig. S3a). Then, this large aggregate undergoes slow structural rearrangement to achieve densely packing (see Fig. S3a). Similar behaviors were observed for all other four systems (see Fig. S3b-S3e). These results demonstrate three characteristic stages of the aggregation: (i) formation of small aggregates at t < 1 ns; (ii) growth of small aggregates into one large aggregate at 1 ns < t < 5 ns; (iii) structural reorganization process of each largest aggregate at t > 5 ns.

The hydrophobic interactions play an important role in the aggregation process of HPS molecules. The time evolution of the number of water molecules around HPS aggregates (within 5 Å) averaged by five MD trajectories, at each concentration, are displayed in Fig. S4. It is clear that, for all five systems, the number of water molecules first decrease suddenly, and then reduce regularly until reach a platform. For system with 60 HPS molecules, the number of water molecules first decrease by 1070 within 1 ns, and then by 252 in the following 4 ns, finally reduce by only 158 within the last 20 ns production simulations. For system with 30 HPS molecules, the number of water molecules first decrease by 760 (t < 1 ns), and then by 281 (1 ns < t < 5 ns), finally reduce by only 38 within the last 20 ns. It is clear that the number of water molecules for systems with higher HPS concentration decrease much faster than the lower ones. In addition, both the exposed surface area and volume of HPS aggregates at each concentration had a sharp decrease in the initial stage, and then reduce slowly to achieve equilibrium with almost constant surface area and volume, as shown in Fig. S5 and Fig. S6, respectively. What's more, the average volume of aggregates from Agg-60 to Agg-10 are 54.0, 36.3, 27.5, 18.7 and 9.6 nm³, respectively. It is clear that the aggregate size and volume of HPS aggregates have a linear relationship.

The aggregation process can be divided into three characteristic stages: the first stage, t < 1 ns, is small aggregates formation process; the second stage, 1 ns < t < 5 ns, is small aggregates growth process; and the final stage is the equilibrium process. During the aggregation process, the HPS molecules cluster first, and the size of aggregates grow accordingly. Due to the hydrophobic interactions, both the number of water molecules around HPS aggregates, the exposed surface areas

and volume of HPS aggregates reduce continuously. In addition, systems with higher concentration aggregate faster than the lower ones. Thus, the dynamics of the aggregation process and the size of the aggregates are heavily concentration dependent.

III. Supplementary Tables S1-S6

Table S1. The optimized bond lengths (in Å), bond angles (in degree), and dihedral angles (in degree) of one representative embedded HPS molecule of the amorphous HPS aggregate, at each size. S_0/S_1 , and Δ represent the geometric parameters extracted from the ground/excited state, and the difference between two states, respectively. The index of each atom shown here is labeled in Figure S1.

	geometric		Agg-60			Agg-40			Agg-30			Agg-20			Agg-10		c	rystal (cal.) ^a	crystal (exper.) ^b
	parameter	S_0	\mathbf{S}_1	Δ	\mathbf{S}_0	\mathbf{S}_1	Δ	S_0	S_1	Δ	\mathbf{S}_0	\mathbf{S}_1	Δ	S_0	S_1	Δ	S_0	\mathbf{S}_1	Δ	S_0
	Si-C2	1.901	1.882	-0.019	1.896	1.880	-0.016	1.895	1.886	-0.009	1.903	1.883	-0.020	1.885	1.871	-0.014	1.893	1.876	-0.017	1.862
	Si-C5	1.883	1.870	-0.013	1.902	1.887	-0.015	1.903	1.884	-0.019	1.903	1.891	-0.012	1.895	1.881	-0.014	1.902	1.888	-0.015	1.874
	Si-C30	1.898	1.907	0.009	1.896	1.905	0.009	1.898	1.909	0.011	1.898	1.909	0.011	1.901	1.908	0.007	1.9	1.909	0.009	1.864
	Si-C31	1.892	1.903	0.011	1.904	1.912	0.008	1.904	1.911	0.007	1.898	1.905	0.007	1.891	1.900	0.009	1.905	1.917	0.012	1.875
	C2-C3	1.376	1.444	0.068	1.372	1.436	0.064	1.375	1.437	0.062	1.376	1.449	0.073	1.372	1.441	0.069	1.371	1.445	0.074	1.358
	C4-C5	1.370	1.434	0.064	1.376	1.444	0.068	1.376	1.444	0.068	1.375	1.438	0.063	1.372	1.440	0.068	1.371	1.444	0.073	1.358
	C2-C19	1.479	1.452	-0.027	1.479	1.452	-0.027	1.481	1.454	-0.027	1.482	1.449	-0.033	1.473	1.443	-0.030	1.479	1.448	-0.03	1.479
	C5-C18	1.477	1.448	-0.029	1.482	1.451	-0.031	1.479	1.450	-0.029	1.483	1.457	-0.026	1.481	1.456	-0.025	1.481	1.453	-0.028	1.480
	C3-C4	1.513	1.444	-0.069	1.512	1.441	-0.071	1.515	1.446	-0.069	1.510	1.437	-0.073	1.512	1.440	-0.072	1.509	1.432	-0.077	1.501
	C3-C6	1.496	1.482	-0.014	1.496	1.483	-0.013	1.494	1.482	-0.012	1.496	1.481	-0.015	1.493	1.480	-0.013	1.497	1.484	-0.014	1.494
	C4-C7	1.489	1.474	-0.015	1.491	1.477	-0.014	1.496	1.479	-0.017	1.499	1.492	-0.007	1.494	1.481	-0.013	1.498	1.495	-0.003	1.487
	C5-Si-C2	93.03	91.53	-1.5	92.92	91.27	-1.65	92.32	90.66	-1.66	93.22	91.51	-1.71	92.52	90.83	-1.69	92.97	91.50	-1.46	93.21
	C30-Si-C31	115.09	112.88	-2.21	114.07	112.14	-1.93	113.76	111.97	-1.79	108.00	106.33	-1.67	114.07	112.17	-1.91	111.62	109.67	-1.95	111.65
	Si-C2-C3	106.55	108.67	2.12	106.79	108.52	1.73	107.26	108.99	1.73	105.90	107.72	1.78	107.11	108.66	1.55	106.87	108.46	1.59	106.33
	C2-C3-C4	116.41	114.74	-1.67	116.78	116.04	-0.74	116.77	115.88	-0.89	117.00	115.89	-1.10	116.15	115.35	-0.79	116.59	115.57	-1.02	117.02
	C3-C2-C19	129.69	128.33	-1.36	127.37	126.10	-1.27	128.52	127.30	-1.22	128.50	126.20	-2.34	129.07	127.37	-1.70	128.15	126.74	-1.41	127.46
	C4-C5-C18	127.97	126.65	-1.32	129.92	128.17	-1.75	129.54	127.80	-1.74	128.30	126.20	-2.07	127.51	126.87	-0.64	129.66	128.39	-1.27	129.30
2-	C3-C2-C19-C24	32.67	27.92	4.75	-31.29	-24.33	6.96	23.56	18.48	5.08	-20.78	-17.64	3.14	-43.36	-32.63	10.73	40.46	33.62	6.84	39.40
5-	C4-C5-C18-C25	20.26	17.13	3.13	-14.38	-14.07	0.31	24.72	23.14	1.58	-11.17	-9.11	2.06	-24.01	-19.02	4.99	-4.40	-1.87	2.53	3.95
3-	C2-C3-C6-C8	57.67	52.66	5.01	-55.56	-52.41	3.15	49.83	45.49	4.34	-63.97	-54.02	9.95	-56.39	-52.78	3.61	62.83	55.52	7.31	58.63
4-	C5-C4-C7-C17	56.96	50.81	6.15	-61.92	-58.02	3.9	56.16	54.33	1.83	-72.08	-70.85	1.23	-62.63	-53.80	8.83	83.89	85.82	1.93	79.75

^a: ref.⁵; ^b: ref.³

	geometric		Agg-60			Agg-40			Agg-30			Agg-20			Agg-10		с	rystal (cal	.) ^a	crystal (exper.) ^b
	parameters	S_0	\mathbf{S}_1	Δ	S_0	\mathbf{S}_1	Δ	\mathbf{S}_0	\mathbf{S}_1	Δ	S_0	\mathbf{S}_1	Δ	\mathbf{S}_0	\mathbf{S}_1	Δ	S_0	\mathbf{S}_1	Δ	\mathbf{S}_0
	Si-C2	1.893	1.879	-0.014	1.894	1.878	-0.016	1.898	1.886	-0.012	1.893	1.876	-0.017	1.895	1.874	-0.021	1.893	1.876	-0.017	1.862
	Si-C5	1.898	1.883	-0.015	1.893	1.880	-0.013	1.893	1.872	-0.021	1.897	1.882	-0.015	1.898	1.887	-0.011	1.902	1.888	-0.015	1.874
	Si-C30	1.894	1.905	0.011	1.893	1.909	0.016	1.896	1.908	0.012	1.894	1.906	0.012	1.900	1.909	0.009	1.900	1.909	0.009	1.864
	Si-C31	1.896	1.906	0.010	1.898	1.904	0.006	1.892	1.904	0.012	1.897	1.908	0.011	1.895	1.905	0.01	1.905	1.917	0.012	1.875
	C2-C3	1.373	1.444	0.071	1.372	1.439	0.067	1.373	1.437	0.064	1.374	1.444	0.07	1.374	1.446	0.072	1.371	1.445	0.074	1.358
	C4-C5	1.374	1.439	0.065	1.372	1.445	0.073	1.370	1.444	0.074	1.373	1.441	0.068	1.373	1.439	0.066	1.371	1.444	0.073	1.358
	C2-C19	1.481	1.451	-0.03	1.477	1.450	-0.027	1.481	1.455	-0.026	1.479	1.449	-0.03	1.479	1.448	-0.031	1.479	1.448	-0.03	1.479
	C5-C18	1.479	1.452	-0.027	1.483	1.453	-0.03	1.479	1.447	-0.032	1.480	1.454	-0.026	1.480	1.456	-0.024	1.481	1.453	-0.028	1.480
	C3-C4	1.512	1.440	-0.072	1.511	1.438	-0.073	1.509	1.437	-0.072	1.513	1.442	-0.071	1.509	1.437	-0.072	1.509	1.432	-0.077	1.501
	C3-C6	1.491	1.475	-0.016	1.490	1.484	-0.006	1.490	1.482	-0.008	1.494	1.479	-0.015	1.497	1.480	-0.017	1.497	1.484	-0.014	1.494
	C4-C7	1.496	1.485	-0.011	1.496	1.475	-0.021	1.495	1.478	-0.017	1.496	1.484	-0.012	1.495	1.484	-0.011	1.498	1.495	-0.003	1.487
	C5-Si-C2	92.72	91.10	-1.62	92.414	90.988	-1.426	93.10	91.32	-1.78	92.90	91.16	-1.74	93.22	91.19	-2.03	92.97	91.50	-1.46	93.21
	C30-Si-C31	111.18	108.96	-2.22	109.81	107.50	-2.31	112.16	109.74	-2.42	110.84	108.13	-2.71	110.67	108.35	-2.32	111.62	109.67	-1.95	111.65
	Si-C2-C3	107.02	108.73	1.71	107.32	109.11	1.79	106.18	108.07	1.89	106.82	108.78	1.96	106.19	108.42	2.23	106.87	108.46	1.59	106.33
	C2-C3-C4	116.72	115.66	-1.06	116.23	115.36	-0.87	117.22	116.26	-0.96	116.70	115.61	-1.09	117.07	115.57	-1.5	116.59	115.57	-1.02	117.02
	C3-C2-C19	126.85	125.59	-1.26	126.76	125.89	-0.87	128.58	127.43	-1.15	128.10	126.38	-1.72	129.12	126.46	-2.66	128.15	126.74	-1.41	127.46
	C4-C5-C18	128.13	126.65	-1.48	125.78	125.57	-0.21	127.34	126.25	-1.09	127.75	126.52	-1.23	128.58	127.31	-1.27	129.66	128.39	-1.27	129.30
2-	C3-C2-C19-C24	-36.13	-26.21	9.92	-45.09	-28.12	16.97	39.45	22.98	16.47	29.80	21.47	8.33	-28.10	-25.42	2.68	40.46	33.62	6.84	39.40
5-	C4-C5-C18-C25	-25.37	-18.86	6.51	-35.81	-24.88	10.93	24.32	20.10	4.22	27.45	20.74	6.71	-18.06	-18.83	0.77	-4.40	-1.87	2.53	3.95
3-	C2-C3-C6-C8	-49.59	-46.00	3.59	-51.25	-47.48	3.77	58.31	45.99	12.32	58.64	50.27	8.37	-62.49	-61.05	1.44	62.83	55.52	7.31	58.63
4-	C5-C4-C7-C17	-64.77	-57.42	7.35	-57.48	-54.19	3.29	66.02	65.24	0.78	60.77	54.37	6.4	-68.17	-49.98	18.19	83.89	85.82	1.93	79.75

Table S2. The optimized bond lengths (in Å), bond angles (in degree), and dihedral angles (in degree) of one representative exposed HPS molecule of the amorphous HPS aggregate, at each size. S_0/S_1 , and Δ represent the geometric parameters extracted from the ground/excited state, and the difference between two states, respectively. The index of each atom shown here is labeled in Figure S1.

^a: ref.⁵; ^b: ref.³

system	HOMO (eV)	LUMO (eV)	$\Delta E_{L-H} (eV)$							
embedded										
Agg-60	-4.97 (0.03)	-1.59 (0.06)	3.37 (0.04)							
Agg-40	-5.10 (0.07)	-1.73 (0.06)	3.37 (0.07)							
Agg-30	-4.90 (0.10)	-1.61 (0.10)	3.33 (0.08)							
Agg-20	-4.97 (0.08)	-1.62 (0.08)	3.35 (0.05)							
Agg-10	-5.07 (0.06)	-1.66 (0.04)	3.41 (0.06)							
	ex	posed								
Agg-60	-5.33	-1.92	3.41							
Agg-40	-5.29	-1.76	3.52							
Agg-30	-5.34	-1.85	3.50							
Agg-20	-5.09	-1.62	3.47							
Agg-10	-5.29	-1.90	3.40							

Table S3. The averaged energies of HOMO and LUMO, and the corresponding energy gap (ΔE_{L-H}) at S₀ for five embedded and one exposed HPS molecules in amorphous HPS aggregates, at each size. The error bars are included in parenthesis.

Table S4. The calculated peak values (in nm) of the vibrationally resolved absorption and emission spectra for five embedded and one exposed HPS molecules in amorphous HPS aggregates, at each size. The corresponding peak values for HPS crystal are included for comparison. The error bars are included in parenthesis.

system	absorption	emission	Stokes shift							
embedded										
Agg-60	437 (8)	550 (11)	113 (9)							
Agg-40	447 (12)	552 (9)	105 (5)							
Agg-30	455 (6)	559 (5)	104 (8)							
Agg-20	444 (9)	553 (6)	108 (7)							
Agg-10	425 (21)	564 (7)	139 (18)							
	exp	posed								
Agg-60	408	581	173							
Agg-40	389	605	216							
Agg-30	355	625	270							
Agg-20	414	561	147							
Agg-10	395	590	195							

^a: ref.⁵.

Table S5. The calculated adiabatic excitation energy (ΔE), oscillator strength (*f*), the electric transition dipole moment (EDM) and the assignment of S₁ for both five embedded (average) and one exposed HPS of the amorphous aggregates. The corresponding parameters for HPS in crystal are included for comparison. The error bars are included in parenthesis.

	ΔE	ſ	EDM	t
system	(eV)	J	(D)	assignment
crystal (cal.) ^a	2.70	0.311	5.908	HOMO \rightarrow LUMO 98.3%
		en	nbedded	
Agg-60	2.60 (0.04)	0.28 (0.03)	5.69 (0.34)	HOMO \rightarrow LUMO (98.6 ± 0.2)%
Agg-40	2.58 (0.05)	0.25 (0.03)	5.59 (0.32)	HOMO \rightarrow LUMO (98.6 ± 0.1)%
Agg-30	2.54 (0.09)	0.27 (0.08)	5.66 (0.67)	HOMO \rightarrow LUMO (98.5 ± 0.1)%
Agg-20	2.59 (0.03)	0.27 (0.02)	5.65 (0.18)	HOMO \rightarrow LUMO (98.6 ± 0.1)%
Agg-10	2.60 (0.05)	0.25 (0.02)	4.65 (1.61)	HOMO \rightarrow LUMO (98.6 ± 0.1)%
		e	xposed	
Agg-60	2.57	0.23	5.25	HOMO \rightarrow LUMO (98.7%)
Agg-40	2.61	0.22	5.09	HOMO \rightarrow LUMO (98.8%)
Agg-30	2.62	0.24	5.49	HOMO \rightarrow LUMO (98.6%)
Agg-20	2.67	0.24	5.48	HOMO \rightarrow LUMO (98.7%)
Agg-10	2.59	0.24	5.42	HOMO \rightarrow LUMO (98.6%)

^a: ref.⁵.

IV. Supplementary Figures S1-S7

Figure S1. The molecular structure of HPS. The dihedral angles between the phenyl groups at 1,1,2,3,4,5-positions and the central silole ring are highlighted by arrows. And the atom index of all heavy atoms are labeled in the figure.

Figure S2 (a) The fragment truncated from HPS molecule for dihedral angles parameters fitting. One specific dihedral angle is labeled on the 3D structure. Atoms for Si, C and H are displayed in yellow, gray and white, respectively. (b) The calculated QM (blue) and MM (black) energy profiles of the dihedral angle C1-Si2-C3-C4.

Figure S3. (a) Initial configuration of HPS molecular crystal for use in the MD simulations, with size $5 \times 5 \times 5$ in the *a*, *b*, and *c* dimensions generated by a replication of the original unit cell. The *aob* (upper) and *boc* (lower) planes of the HPS supercell were displayed in the upper and lower panels of a. (b) The comparison of the packing density between the experimental measurement and MD calculations.

Figure S4 The representative snapshots extracted from one of the five MD trajectories, at each concentration, to show the aggregation process. Water molecules are not shown for clarity.

Figure S5 The time evolution of the number of water molecules (within 5 Å) around all amorphous HPS aggregates averaged by five MD trajectories, at each concentration. The different stages of the aggregation process are divided by the dashed lines.

Figure S6 The time evolution of the exposed surface area of HPS aggregates averaged by five MD trajectories, at each concentration. The different stages of the aggregation process are divided by the dashed lines.

Figure. S7 The time evolution of the volume of HPS aggregates averaged by five MD trajectories, at each concentration. The different stages of the aggregation process are divided by the dashed lines.

Figure. S8 The radical distribution functions (RDFs) *vs* the intermolecular Si-Si distance for each separate MD trajectory for systems (a) Agg-60, (b) Agg-40, (c) Agg-30, (d) Agg-20 and (e) Agg-10, respectively.

V. Supplementary force filed parameters of HPS

The force field parameters of HPS molecule in Gromacs format: ; HPS.itp

,	o.nep						
[mo	leculety	vpe]					
; nan	ne		nrex	cl			
HPS			3				
[ato	ms]						
; nr	type	resi	res	atom	cgnr	charge	mass
1	Si	1	MOL	SI1	1	0.886633	28.08500
2	ce	1	MOL	C1	2	-0.417819	12.01000
3	ca	1	MOL	C2	3	0.190061	12.01000
4	ca	1	MOL	C3	4	-0.167300	12.01000
5	ha	1	MOL	H1	5	0.152041	1.00800
6	ca	1	MOL	C4	6	-0.197748	12.01000
7	ha	1	MOL	H2	7	0.159639	1.00800
8	ca	1	MOL	C5	8	-0.117471	12.01000
9	ha	1	MOL	H3	9	0.140432	1.00800
10	ca	1	MOL	C6	10	-0.197748	12.01000
11	ha	1	MOL	H4	11	0.159639	1.00800
12	ca	1	MOL	C7	12	-0.167300	12.01000
13	ha	1	MOL	Н5	13	0.152041	1.00800
14	cf	1	MOL	C8	14	0.021750	12.01000
15	ca	1	MOL	C9	15	0.160900	12.01000
16	ca	1	MOL	C10	16	-0.199923	12.01000
17	ha	1	MOL	Н6	17	0.152918	1.00800
18	ca	1	MOL	C11	18	-0.144689	12.01000
19	ha	1	MOL	H7	19	0.147962	1.00800
20	ca	1	MOL	C12	20	-0.154776	12.01000
21	ha	1	MOL	H8	21	0.145188	1.00800
22	ca	1	MOL	C13	22	-0.144689	12.01000
23	ha	1	MOL	H9	23	0.147962	1.00800
24	ca	1	MOL	C14	24	-0.199923	12.01000
25	ha	1	MOL	H10	25	0.152918	1.00800
26	cf	1	MOL	C15	26	0.021750	12.01000
27	ca	1	MOL	C16	27	0.160900	12.01000
28	ca	1	MOL	C17	28	-0.199923	12.01000
29	ha	1	MOL	H11	29	0.152918	1.00800
30	ca	1	MOL	C18	30	-0.144689	12.01000
31	ha	1	MOL	H12	31	0.147962	1.00800
32	ca	1	MOL	C19	32	-0.154776	12.01000
33	ha	1	MOL	H13	33	0.145188	1.00800
34	ca	1	MOL	C20	34	-0.144689	12.01000
35	ha	1	MOL	H14	35	0.147962	1.00800
36	ca	1	MOL	C21	36	-0.199923	12.01000

37	ha	1	MOL	H15	37	0.152918	1.00800
38	ce	1	MOL	C22	38	-0.417819	12.01000
39	ca	1	MOL	C23	39	0.190061	12.01000
40	ca	1	MOL	C24	40	-0.167300	12.01000
41	ha	1	MOL	H16	41	0.152041	1.00800
42	ca	1	MOL	C25	42	-0.197748	12.01000
43	ha	1	MOL	H17	43	0.159639	1.00800
44	ca	1	MOL	C26	44	-0.117471	12.01000
45	ha	1	MOL	H18	45	0.140432	1.00800
46	ca	1	MOL	C27	46	-0.197748	12.01000
47	ha	1	MOL	H19	47	0.159639	1.00800
48	ca	1	MOL	C28	48	-0.167300	12.01000
49	ha	1	MOL	H20	49	0.152041	1.00800
50	ca	1	MOL	C29	50	-0.262672	12.01000
51	ca	1	MOL	C30	51	-0.097514	12.01000
52	ha	1	MOL	H21	52	0.115976	1.00800
53	ca	1	MOL	C31	53	-0.133910	12.01000
54	ha	1	MOL	H22	54	0.134201	1.00800
55	ca	1	MOL	C32	55	-0.129414	12.01000
56	ha	1	MOL	H23	56	0.137199	1.00800
57	ca	1	MOL	C33	57	-0.133910	12.01000
58	ha	1	MOL	H24	58	0.134201	1.00800
59	ca	1	MOL	C34	59	-0.097514	12.01000
60	ha	1	MOL	H25	60	0.115976	1.00800
61	ca	1	MOL	C35	61	-0.262672	12.01000
62	ca	1	MOL	C36	62	-0.097514	12.01000
63	ha	1	MOL	H26	63	0.115976	1.00800
64	ca	1	MOL	C37	64	-0.133910	12.01000
65	ha	1	MOL	H27	65	0.134201	1.00800
66	ca	1	MOL	C38	66	-0.129414	12.01000
67	ha	1	MOL	H28	67	0.137199	1.00800
68	ca	1	MOL	C39	68	-0.133910	12.01000
69	ha	1	MOL	H29	69	0.134201	1.00800
70	ca	1	MOL	C40	70	-0.097514	12.01000
71	ha	1	MOL	H30	71	0.115976	1.00800

[bonds]

; ai	aj	funct	r	k	
1	2	1	1.8680e-01	2.7723e+05;	SI1 - C1
1	38	1	1.8680e-01	2.7723e+05;	SI1 - C22
1	50	1	1.8700e-01	2.7070e+05;	SI1 - C29
1	61	1	1.8700e-01	2.7070e+05;	SI1 - C35
2	3	1	1.4720e-01	3.0627e+05;	C1 - C2
2	14	1	1.3380e-01	4.7062e+05;	C1 - C8
3	4	1	1.3870e-01	4.0033e+05;	C2 - C3

3	12	1	1.3870e-01	4.0033e+05;	C2 - C7
4	5	1	1.0870e-01	2.8811e+05;	C3 - H1
4	6	1	1.3870e-01	4.0033e+05;	C3 - C4
6	7	1	1.0870e-01	2.8811e+05;	C4 - H2
6	8	1	1.3870e-01	4.0033e+05;	C4 - C5
8	9	1	1.0870e-01	2.8811e+05;	С5 - НЗ
8	10	1	1.3870e-01	4.0033e+05;	C5 - C6
10	11	1	1.0870e-01	2.8811e+05;	C6 - H4
10	12	1	1.3870e-01	4.0033e+05;	C6 - C7
12	13	1	1.0870e-01	2.8811e+05;	С7 - Н5
14	15	1	1.4720e-01	3.0627e+05;	C8 - C9
14	26	1	1.4510e-01	3.2677e+05;	C8 - C15
15	16	1	1.3870e-01	4.0033e+05;	C9 - C10
15	24	1	1.3870e-01	4.0033e+05;	C9 - C14
16	17	1	1.0870e-01	2.8811e+05;	С10 - Н6
16	18	1	1.3870e-01	4.0033e+05;	C10 - C11
18	19	1	1.0870e-01	2.8811e+05;	С11 - Н7
18	20	1	1.3870e-01	4.0033e+05;	C11 - C12
20	21	1	1.0870e-01	2.8811e+05;	С12 - Н8
20	22	1	1.3870e-01	4.0033e+05;	C12 - C13
22	23	1	1.0870e-01	2.8811e+05;	С13 - Н9
22	24	1	1.3870e-01	4.0033e+05;	C13 - C14
24	25	1	1.0870e-01	2.8811e+05;	C14 - H10
26	27	1	1.4720e-01	3.0627e+05;	C15 - C16
26	38	1	1.3380e-01	4.7062e+05;	C15 - C22
27	28	1	1.3870e-01	4.0033e+05;	C16 - C17
27	36	1	1.3870e-01	4.0033e+05;	C16 - C21
28	29	1	1.0870e-01	2.8811e+05;	C17 - H11
28	30	1	1.3870e-01	4.0033e+05;	C17 - C18
30	31	1	1.0870e-01	2.8811e+05;	C18 - H12
30	32	1	1.3870e-01	4.0033e+05;	C18 - C19
32	33	1	1.0870e-01	2.8811e+05;	C19 - H13
32	34	1	1.3870e-01	4.0033e+05;	C19 - C20
34	35	1	1.0870e-01	2.8811e+05;	C20 - H14
34	36	1	1.3870e-01	4.0033e+05;	C20 - C21
36	37	1	1.0870e-01	2.8811e+05;	C21 - H15
38	39	1	1.4720e-01	3.0627e+05;	C22 - C23
39	40	1	1.3870e-01	4.0033e+05;	C23 - C24
39	48	1	1.3870e-01	4.0033e+05;	C23 - C28
40	41	1	1.0870e-01	2.8811e+05;	C24 - H16
40	42	1	1.3870e-01	4.0033e+05;	C24 - C25
42	43	1	1.0870e-01	2.8811e+05;	С25 - Н17
42	44	1	1.3870e-01	4.0033e+05;	C25 - C26
44	45	1	1.0870e-01	2.8811e+05;	C26 - H18
44	46	1	1.3870e-01	4.0033e+05;	C26 - C27

46	47	1	1.0870e-01	2.8811e+05 ;	C27 - H19
46	48	1	1.3870e-01	4.0033e+05;	C27 - C28
48	49	1	1.0870e-01	2.8811e+05;	C28 - H20
50	51	1	1.3870e-01	4.0033e+05;	C29 - C30
50	59	1	1.3870e-01	4.0033e+05;	C29 - C34
51	52	1	1.0870e-01	2.8811e+05;	C30 - H21
51	53	1	1.3870e-01	4.0033e+05;	C30 - C31
53	54	1	1.0870e-01	2.8811e+05;	C31 - H22
53	55	1	1.3870e-01	4.0033e+05;	C31 - C32
55	56	1	1.0870e-01	2.8811e+05;	С32 - Н23
55	57	1	1.3870e-01	4.0033e+05;	C32 - C33
57	58	1	1.0870e-01	2.8811e+05;	C33 - H24
57	59	1	1.3870e-01	4.0033e+05;	C33 - C34
59	60	1	1.0870e-01	2.8811e+05;	C34 - H25
61	62	1	1.3870e-01	4.0033e+05;	C35 - C36
61	70	1	1.3870e-01	4.0033e+05;	C35 - C40
62	63	1	1.0870e-01	2.8811e+05;	C36 - H26
62	64	1	1.3870e-01	4.0033e+05;	C36 - C37
64	65	1	1.0870e-01	2.8811e+05;	С37 - Н27
64	66	1	1.3870e-01	4.0033e+05;	C37 - C38
66	67	1	1.0870e-01	2.8811e+05;	C38 - H28
66	68	1	1.3870e-01	4.0033e+05;	C38 - C39
68	69	1	1.0870e-01	2.8811e+05;	C39 - H29
68	70	1	1.3870e-01	4.0033e+05;	C39 - C40
70	71	1	1.0870e-01	2.8811e+05;	C40 - H30

[pairs]

;ai	aj	funct	
1	4	1;	SI1 - C3
1	12	1;	SI1 - C7
1	15	1;	SI1 - C9
1	27	1;	SI1 - C16
1	40	1;	SI1 - C24
1	48	1;	SI1 - C28
1	52	1;	SI1 - H21
1	53	1;	SI1 - C31
1	57	1;	SI1 - C33
1	60	1;	SI1 - H25
1	63	1;	SI1 - H26
1	64	1;	SI1 - C37
1	68	1;	SI1 - C39
1	71	1;	SI1 - H30
2	5	1;	C1 - H1
2	6	1;	C1 - C4
2	10	1;	C1 - C6
2	13	1;	C1 - H5

2	16	1;	C1 - C10
2	24	1;	C1 - C14
2	27	1;	C1 - C16
2	39	1;	C1 - C23
2	51	1;	C1 - C30
2	59	1;	C1 - C34
2	62	1;	C1 - C36
2	70	1;	C1 - C40
3	7	1;	C2 - H2
3	8	1;	C2 - C5
3	11	1;	C2 - H4
3	15	1;	C2 - C9
3	26	1;	C2 - C15
4	9	1;	С3 - Н3
4	10	1;	C3 - C6
4	13	1;	С3 - Н5
4	14	1;	C3 - C8
5	7	1;	H1 - H2
5	8	1;	H1 - C5
5	12	1;	H1 - C7
6	11	1;	C4 - H4
6	12	1;	C4 - C7
7	9	1;	H2 - H3
7	10	1;	H2 - C6
8	13	1;	С5 - Н5
9	11	1;	H3 - H4
9	12	1;	H3 - C7
11	13	1;	H4 - H5
12	14	1;	C7 - C8
14	17	1;	C8 - H6
14	18	1;	C8 - C11
14	22	1;	C8 - C13
14	25	1;	C8 - H10
14	28	1;	C8 - C17
14	36	1;	C8 - C21
14	39	1;	C8 - C23
15	19	1;	С9 - Н7
15	20	1;	C9 - C12
15	23	1;	С9 - Н9
15	27	1;	C9 - C16
15	38	1;	C9 - C22
16	21	1;	С10 - Н8
16	22	1;	C10 - C13
16	25	1;	C10 - H10
16	26	1;	C10 - C15

17	19	1;	H6 - H7
17	20	1;	H6 - C12
17	24	1;	H6 - C14
18	23	1;	С11 - Н9
18	24	1;	C11 - C14
19	21	1;	H7 - H8
19	22	1;	H7 - C13
20	25	1;	C12 - H10
21	23	1;	H8 - H9
21	24	1;	H8 - C14
23	25	1;	H9 - H10
24	26	1;	C14 - C15
26	29	1;	C15 - H11
26	30	1;	C15 - C18
26	34	1;	C15 - C20
26	37	1;	С15 - Н15
26	40	1;	C15 - C24
26	48	1;	C15 - C28
27	31	1;	C16 - H12
27	32	1;	C16 - C19
27	35	1;	C16 - H14
27	39	1;	C16 - C23
28	33	1;	C17 - H13
28	34	1;	C17 - C20
28	37	1;	C17 - H15
28	38	1;	C17 - C22
29	31	1;	H11 - H12
29	32	1;	H11 - C19
29	36	1;	H11 - C21
30	35	1;	C18 - H14
30	36	1;	C18 - C21
31	33	1;	H12 - H13
31	34	1;	H12 - C20
32	37	1;	C19 - H15
33	35	1;	H13 - H14
33	36	1;	H13 - C21
35	37	1;	H14 - H15
36	38	1;	C21 - C22
38	3	1;	C22 - C2
38	41	1;	C22 - H16
38	42	1;	C22 - C25
38	46	1;	C22 - C27
38	49	1;	С22 - Н20
38	51	1;	C22 - C30
38	59	1;	C22 - C34

38	62	1;	C22 - C36
38	70	1;	C22 - C40
39	43	1;	C23 - H17
39	44	1;	C23 - C26
39	47	1;	C23 - H19
40	45	1;	C24 - H18
40	46	1;	C24 - C27
40	49	1;	С24 - Н20
41	43	1;	H16 - H17
41	44	1;	H16 - C26
41	48	1;	H16 - C28
42	47	1;	C25 - H19
42	48	1;	C25 - C28
43	45	1;	H17 - H18
43	46	1;	H17 - C27
44	49	1;	С26 - Н20
45	47	1;	H18 - H19
45	48	1;	H18 - C28
47	49	1;	H19 - H20
50	3	1;	C29 - C2
50	14	1;	C29 - C8
50	26	1;	C29 - C15
50	39	1;	C29 - C23
50	54	1;	С29 - Н22
50	55	1;	C29 - C32
50	58	1;	C29 - H24
50	62	1;	C29 - C36
50	70	1;	C29 - C40
51	56	1;	С30 - Н23
51	57	1;	C30 - C33
51	60	1;	С30 - Н25
52	54	1;	H21 - H22
52	55	1;	H21 - C32
52	59	1;	H21 - C34
53	58	1;	С31 - Н24
53	59	1;	C31 - C34
54	56	1;	H22 - H23
54	57	1;	H22 - C33
55	60	1;	С32 - Н25
56	58	1;	H23 - H24
56	59	1;	H23 - C34
58	60	1;	H24 - H25
61	3	1;	C35 - C2
61	14	1;	C35 - C8
61	26	1;	C35 - C15

61	39	1;	C35 - C23
61	51	1;	C35 - C30
61	59	1;	C35 - C34
61	65	1;	С35 - Н27
61	66	1;	C35 - C38
61	69	1;	С35 - Н29
62	67	1;	С36 - Н28
62	68	1;	C36 - C39
62	71	1;	С36 - Н30
63	65	1;	H26 - H27
63	66	1;	H26 - C38
63	70	1;	H26 - C40
64	69	1;	С37 - Н29
64	70	1;	C37 - C40
65	67	1;	H27 - H28
65	68	1;	H27 - C39
66	71	1;	С38 - Н30
67	69	1;	H28 - H29
67	70	1;	H28 - C40
69	71	1;	H29 - H30

[angles]

;	ai	aj	ak	funct	theta	cth	
1	2	3	1	. 1	.2462e+02	5.2559e+02;	SI1 - C1 - C2
1	2	14	1	. 1	.0674e+02	5.3982e+02;	SI1 - C1 - C8
1	38	26	1	. 1	.0674e+02	5.3982e+02;	SI1 - C22- C15
1	38	39	1	. 1	.2462e+02	5.2559e+02;	SI1 - C22- C23
1	50	51	1	. 1	.2182e+02	5.3421e+02;	SI1 - C29- C30
1	50	59	1	. 1	.2182e+02	5.3421e+02;	SI1 - C29- C34
1	61	62	1	. 1	.2182e+02	5.3421e+02;	SI1 - C35- C36
1	61	70	1	. 1	.2182e+02	5.3421e+02;	SI1 - C35- C40
2	1	38	1	. 9	.3205e+01	5.3756e+02;	C1 - SI1- C22
2	1	50	1	. 1	.1061e+02	5.3396e+02;	C1 - SI1- C29
2	1	61	1	. 1	.1061e+02	5.3396e+02;	C1 - SI1- C35
2	3	4	1	. 1	.2066e+02	5.4308e+02;	C1 - C2 - C3
2	3	12	1	. 1	.2066e+02	5.4308e+02;	C1 - C2 - C7
2	14	15	1	. 1	.2308e+02	5.4559e+02;	C1 - C8 - C9
2	14	26	1	. 1	.3092e+02	5.3388e+02;	C1 - C8 - C15
3	2	14	1	. 1	.2308e+02	5.4559e+02;	C2 - C1 - C8
3	4	5	1	. 1	.2001e+02	4.0585e+02;	C2 - C3 - H1
3	4	6	1	. 1	.1997e+02	5.6233e+02;	C2 - C3 - C4
3	12	10	1	. 1	.1997e+02	5.6233e+02;	C2 - C7 - C6
3	12	13	1	. 1	.2001e+02	4.0585e+02;	С2 - С7 - Н5
4	3	12	1	. 1	.1997e+02	5.6233e+02;	C3 - C2 - C7
4	6	7	1	. 1	.2001e+02	4.0585e+02;	С3 - С4 - Н2

4	6	8	1	1.1997e+02	5.6233e+02;	C3 - C4 - C5
5	4	6	1	1.2001e+02	4.0585e+02;	H1 - C3 - C4
6	8	9	1	1.2001e+02	4.0585e+02;	С4 - С5 - Н3
6	8	10	1	1.1997e+02	5.6233e+02;	C4 - C5 - C6
7	6	8	1	1.2001e+02	4.0585e+02;	H2 - C4 - C5
8	10	11	1	1.2001e+02	4.0585e+02;	С5 - С6 - Н4
8	10	12	1	1.1997e+02	5.6233e+02;	C5 - C6 - C7
9	8	10	1	1.2001e+02	4.0585e+02;	H3 - C5 - C6
10	12	13	1	1.2001e+02	4.0585e+02;	Сб - С7 - Н5
11	10	12	1	1.2001e+02	4.0585e+02;	H4 - C6 - C7
14	15	16	1	1.2066e+02	5.4308e+02;	C8 - C9 - C10
14	15	24	1	1.2066e+02	5.4308e+02;	C8 - C9 - C14
14	26	27	1	1.1834e+02	5.3669e+02;	C8 - C15- C16
14	26	38	1	1.3092e+02	5.3388e+02;	C8 - C15- C22
15	14	26	1	1.1834e+02	5.3669e+02;	C9 - C8 - C15
15	16	17	1	1.2001e+02	4.0585e+02;	С9 - С10- Н6
15	16	18	1	1.1997e+02	5.6233e+02;	C9 - C10- C11
15	24	22	1	1.1997e+02	5.6233e+02;	C9 - C14- C13
15	24	25	1	1.2001e+02	4.0585e+02;	C9 - C14- H10
16	15	24	1	1.1997e+02	5.6233e+02;	C10 - C9 - C14
16	18	19	1	1.2001e+02	4.0585e+02;	С10 - С11- Н7
16	18	20	1	1.1997e+02	5.6233e+02;	C10 - C11- C12
17	16	18	1	1.2001e+02	4.0585e+02;	Н6 - С10- С11
18	20	21	1	1.2001e+02	4.0585e+02;	С11 - С12- Н8
18	20	22	1	1.1997e+02	5.6233e+02;	C11 - C12- C13
19	18	20	1	1.2001e+02	4.0585e+02;	Н7 - С11- С12
20	22	23	1	1.2001e+02	4.0585e+02;	С12 - С13- Н9
20	22	24	1	1.1997e+02	5.6233e+02;	C12 - C13- C14
21	20	22	1	1.2001e+02	4.0585e+02;	H8 - C12- C13
22	24	25	1	1.2001e+02	4.0585e+02;	C13 - C14- H10
23	22	24	1	1.2001e+02	4.0585e+02;	Н9 - С13- С14
26	27	28	1	1.2066e+02	5.4308e+02;	C15 - C16- C17
26	27	36	1	1.2066e+02	5.4308e+02;	C15 - C16- C21
26	38	39	1	1.2308e+02	5.4559e+02;	C15 - C22- C23
27	26	38	1	1.2308e+02	5.4559e+02;	C16 - C15- C22
27	28	29	1	1.2001e+02	4.0585e+02;	C16 - C17- H11
27	28	30	1	1.1997e+02	5.6233e+02;	C16 - C17- C18
27	36	34	1	1.1997e+02	5.6233e+02;	C16 - C21- C20
27	36	37	1	1.2001e+02	4.0585e+02;	С16 - С21- Н15
28	27	36	1	1.1997e+02	5.6233e+02;	C17 - C16- C21
28	30	31	1	1.2001e+02	4.0585e+02;	C17 - C18- H12
28	30	32	1	1.1997e+02	5.6233e+02;	C17 - C18- C19
29	28	30	1	1.2001e+02	4.0585e+02;	H11 - C17- C18
30	32	33	1	1.2001e+02	4.0585e+02;	C18 - C19- H13
30	32	34	1	1.1997e+02	5.6233e+02;	C18 - C19- C20

31	30	32	1	1.2001e+02	4.0585e+02;	H12 - C18- C19
32	34	35	1	1.2001e+02	4.0585e+02;	С19 - С20- Н14
32	34	36	1	1.1997e+02	5.6233e+02;	C19 - C20- C21
33	32	34	1	1.2001e+02	4.0585e+02;	Н13 - С19- С20
34	36	37	1	1.2001e+02	4.0585e+02;	С20 - С21- Н15
35	34	36	1	1.2001e+02	4.0585e+02;	H14 - C20- C21
38	1	50	1	1.1061e+02	5.3396e+02;	C22 - SI1- C29
38	1	61	1	1.1061e+02	5.3396e+02;	C22 - SI1- C35
38	39	40	1	1.2066e+02	5.4308e+02;	C22 - C23- C24
38	39	48	1	1.2066e+02	5.4308e+02;	C22 - C23- C28
39	40	41	1	1.2001e+02	4.0585e+02;	С23 - С24- Н16
39	40	42	1	1.1997e+02	5.6233e+02;	C23 - C24- C25
39	48	46	1	1.1997e+02	5.6233e+02;	C23 - C28- C27
39	48	49	1	1.2001e+02	4.0585e+02;	С23 - С28- Н20
40	39	48	1	1.1997e+02	5.6233e+02;	C24 - C23- C28
40	42	43	1	1.2001e+02	4.0585e+02;	С24 - С25- Н17
40	42	44	1	1.1997e+02	5.6233e+02;	C24 - C25- C26
41	40	42	1	1.2001e+02	4.0585e+02;	Н16 - С24- С25
42	44	45	1	1.2001e+02	4.0585e+02;	С25 - С26- Н18
42	44	46	1	1.1997e+02	5.6233e+02;	C25 - C26- C27
43	42	44	1	1.2001e+02	4.0585e+02;	Н17 - С25- С26
44	46	47	1	1.2001e+02	4.0585e+02;	С26 - С27- Н19
44	46	48	1	1.1997e+02	5.6233e+02;	C26 - C27- C28
45	44	46	1	1.2001e+02	4.0585e+02;	H18 - C26- C27
46	48	49	1	1.2001e+02	4.0585e+02;	С27 - С28- Н20
47	46	48	1	1.2001e+02	4.0585e+02;	Н19 - С27- С28
50	1	61	1	1.1165e+02	5.3271e+02;	C29 - SI1- C35
50	51	52	1	1.2001e+02	4.0585e+02;	С29 - С30- Н21
50	51	53	1	1.1997e+02	5.6233e+02;	C29 - C30- C31
50	59	57	1	1.1997e+02	5.6233e+02;	C29 - C34- C33
50	59	60	1	1.2001e+02	4.0585e+02;	С29 - С34- Н25
51	50	59	1	1.1997e+02	5.6233e+02;	C30 - C29- C34
51	53	54	1	1.2001e+02	4.0585e+02;	С30 - С31- Н22
51	53	55	1	1.1997e+02	5.6233e+02;	C30 - C31- C32
52	51	53	1	1.2001e+02	4.0585e+02;	H21 - C30- C31
53	55	56	1	1.2001e+02	4.0585e+02;	С31 - С32- Н23
53	55	57	1	1.1997e+02	5.6233e+02;	C31 - C32- C33
54	53	55	1	1.2001e+02	4.0585e+02;	H22 - C31- C32
55	57	58	1	1.2001e+02	4.0585e+02;	С32 - С33- Н24
55	57	59	1	1.1997e+02	5.6233e+02;	C32 - C33- C34
56	55	57	1	1.2001e+02	4.0585e+02;	H23 - C32- C33
57	59	60	1	1.2001e+02	4.0585e+02;	С33 - С34- Н25
58	57	59	1	1.2001e+02	4.0585e+02;	H24 - C33- C34
61	62	63	1	1.2001e+02	4.0585e+02;	С35 - С36- Н26
61	62	64	1	1.1997e+02	5.6233e+02;	C35 - C36- C37

61	70	68	1	1.1997e+02	5.6233e+02;	C35 - C40- C39
61	70	71	1	1.2001e+02	4.0585e+02;	С35 - С40- Н30
62	61	70	1	1.1997e+02	5.6233e+02;	C36 - C35- C40
62	64	65	1	1.2001e+02	4.0585e+02;	С36 - С37- Н27
62	64	66	1	1.1997e+02	5.6233e+02;	C36 - C37- C38
63	62	64	1	1.2001e+02	4.0585e+02;	H26 - C36- C37
64	66	67	1	1.2001e+02	4.0585e+02;	С37 - С38- Н28
64	66	68	1	1.1997e+02	5.6233e+02;	C37 - C38- C39
65	64	66	1	1.2001e+02	4.0585e+02;	H27 - C37- C38
66	68	69	1	1.2001e+02	4.0585e+02;	С38 - С39- Н29
66	68	70	1	1.1997e+02	5.6233e+02;	C38 - C39- C40
67	66	68	1	1.2001e+02	4.0585e+02;	H28 - C38- C39
68	70	71	1	1.2001e+02	4.0585e+02;	С39 - С40- Н30
69	68	70	1	1.2001e+02	4.0585e+02;	H29 - C39- C40

[dihedrals] ; propers

; treated as RBs in GROMACS to use combine multiple AMBER torsions per quartet

; i	j	k	1	fur	nc CO	C1	C2	C3	C4	C5	
1	2	3	4	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000	; SI1- C1- C2- C3
1	2	3	12	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000	; SI1- C1- C2- C7
1	2	14	15	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000	; SI1- C1- C8- C9
1	2	14	26	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000	; SI1- C1- C8-C15
1	38	26	14	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000	; SI1-C22-C15- C8
1	38	26	27	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000	; SI1-C22-C15-C16
1	38	39	40	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000	; SI1-C22-C23-C24
1	38	39	48	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000	; SI1-C22-C23-C28
1	50	51	52	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C29-C30-H21
1	50	51	53	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C29-C30-C31
1	50	59	57	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C29-C34-C33
1	50	59	60	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C29-C34-H25
1	61	62	63	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C35-C36-H26
1	61	62	64	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C35-C36-C37
1	61	70	68	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C35-C40-C39
1	61	70	71	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	; SI1-C35-C40-H30
2	1	38	26	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C22-C15
2	1	38	39	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C22-C23
2	1	50	51	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C29-C30
2	1	50	59	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C29-C34
2	1	61	62	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C35-C36
2	1	61	70	3 -	47.27800	-1.20353	0.06301	1.4254	-0.0668	0.17540	7; C1-SI1-C35-C40
2	3	4	5	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.0000	0; C1- C2- C3- H1
2	3	4	6	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.0000	0 ; C1- C2- C3- C4
2	3	12	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.0000	0 ; C1- C2- C7- C6
2	3	12	13	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.0000	0 ; C1- C2- C7- H5
2	14	15	16	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.0000	0 ; C1- C8- C9-C10

2	14	15	24	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000 ; C1- C8- C9-C14
2	14	26	27	3	8.36800	0.00000	-8.36800	0.00000	0.00000	0.00000 ; C1- C8-C15-C16
2	14	26	38	3	8.36800	0.00000	-8.36800	0.00000	0.00000	0.00000 ; C1- C8-C15-C22
3	2	14	15	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000 ; C2- C1- C8- C9
3	2	14	26	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000 ; C2- C1- C8-C15
3	4	6	7	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C2- C3- C4- H2
3	4	6	8	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C2- C3- C4- C5
3	12	10	8	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C2- C7- C6- C5
3	12	10	11	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C2- C7- C6- H4
4	3	2	14	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000 ; C3- C2- C1- C8
4	3	12	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C3- C2- C7- C6
4	3	12	13	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C3- C2- C7- H5
4	6	8	9	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C3- C4- C5- H3
4	6	8	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C3- C4- C5- C6
5	4	3	12	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H1- C3- C2- C7
5	4	6	7	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H1- C3- C4- H2
5	4	6	8	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H1- C3- C4- C5
6	4	3	12	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C4- C3- C2- C7
6	8	10	11	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C4- C5- C6- H4
6	8	10	12	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C4- C5- C6- C7
7	6	8	9	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H2- C4- C5- H3
7	6	8	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H2- C4- C5- C6
8	10	12	13	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C5- C6- C7- H5
9	8	10	11	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H3- C5- C6- H4
9	8	10	12	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H3- C5- C6- C7
11	10	12	13	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H4- C6- C7- H5
12	3	2	14	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000 ; C7- C2- C1- C8
14	15	16	17	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C8- C9-C10- H6
14	15	16	18	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C8- C9-C10-C11
14	15	24	22	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C8- C9-C14-C13
14	15	24	25	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C8- C9-C14-H10
14	26	27	28	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000 ; C8-C15-C16-C17
14	26	27	36	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000 ; C8-C15-C16-C21
14	26	38	39	3	55.64720	0.00000	-55.64720	0.00000	0.00000	0.00000; C8-C15-C22-C23
15	14	26	27	3	8.36800	0.00000	-8.36800	0.00000	0.00000	0.00000 ; C9- C8-C15-C16
15	14	26	38	3	8.36800	0.00000	-8.36800	0.00000	0.00000	0.00000 ; C9- C8-C15-C22
15	16	18	19	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C9-C10-C11- H7
15	16	18	20	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C9-C10-C11-C12
15	24	22	20	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C9-C14-C13-C12
15	24	22	23	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C9-C14-C13- H9
16	15	14	26	3	21.33840	0.00000	-21.33840	0.00000	0.00000	0.00000 ; C10- C9- C8-C15
16	15	24	22	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C10- C9-C14-C13
16	15	24	25	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C10- C9-C14-H10
16	18	20	21	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; С10-С11-С12- Н8
16	18	20	22	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C10-C11-C12-C13

17	16	15	24	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H6-C10- C9-C14
17	16	18	19	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H6-C10-C11- H7
17	16	18	20	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H6-C10-C11-C12
18	16	15	24	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0.00000; C11-C10- C9-C14
18	20	22	23	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C11-C12-C13- H9
18	20	22	24	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C11-C12-C13-C14
19	18	20	21	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H7-C11-C12- H8
19	18	20	22	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H7-C11-C12-C13
20	22	24	25	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C12-C13-C14-H10
21	20	22	23	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H8-C12-C13- H9
21	20	22	24	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H8-C12-C13-C14
23	22	24	25	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H9-C13-C14-H10
24	15	14	26	3	21.33840	0.00000	-21.33840	0.0000	0.0000	0 0.00000 ; C14- C9- C8-C15
26	27	28	29	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C15-C16-C17-H11
26	27	28	30	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C15-C16-C17-C18
26	27	36	34	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C15-C16-C21-C20
26	27	36	37	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C15-C16-C21-H15
26	38	39	40	3	55.64720	0.00000	-55.64720	0.0000	0.0000	0 0.00000 ; C15-C22-C23-C24
26	38	39	48	3	55.64720	0.00000	-55.64720	0.0000	0.0000	0 0.00000 ; C15-C22-C23-C28
27	26	38	39	3	55.64720	0.00000	-55.64720	0.0000	0.0000	0 0.00000; C16-C15-C22-C23
27	28	30	31	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C16-C17-C18-H12
27	28	30	32	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C16-C17-C18-C19
27	36	34	32	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C16-C21-C20-C19
27	36	34	35	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C16-C21-C20-H14
28	27	26	38	3	21.33840	0.00000	-21.33840	0.0000	0.0000	0 0.00000; C17-C16-C15-C22
28	27	36	34	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C17-C16-C21-C20
28	27	36	37	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C17-C16-C21-H15
28	30	32	33	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C17-C18-C19-H13
28	30	32	34	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C17-C18-C19-C20
29	28	27	36	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H11-C17-C16-C21
29	28	30	31	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H11-C17-C18-H12
29	28	30	32	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H11-C17-C18-C19
30	28	27	36	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000; C18-C17-C16-C21
30	32	34	35	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C18-C19-C20-H14
30	32	34	36	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C18-C19-C20-C21
31	30	32	33	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H12-C18-C19-H13
31	30	32	34	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H12-C18-C19-C20
32	34	36	37	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; C19-C20-C21-H15
33	32	34	35	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H13-C19-C20-H14
33	32	34	36	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H13-C19-C20-C21
35	34	36	37	3	30.33400	0.00000	-30.33400	0.0000	0.0000	0 0.00000 ; H14-C20-C21-H15
36	27	26	38	3	21.33840	0.00000	-21.33840	0.0000	0.0000	0 0.00000 ; C21-C16-C15-C22
38	1	2 3	3	-47.2	27800 -1.	20353	0.06301 1	.4254 -0).0668 ().175407; C22-SI1- C1- C2
38	1	2 1	4 3	-47	.27800 -1	1.20353	0.06301	1.4254	-0.0668	0.175407; C22-SI1- C1- C8
38	1	50	51	3 -4	7.27800	-1.20353	0.06301	1.4254	-0.0668	0.175407; C22-SI1-C29-C30

38	1	50	59	3 - 47.27800	-1.20353	0.06301	1.4254	-0.0668	0.175407; C22-SI1-C29-C34
38	1	61	62	3 -47.27800 -	1.20353	0.06301	1.4254 .	-0.0668	0.175407; C22-SI1-C35-C36
38	1	61	70	3 -47.27800 -	1.20353	0.06301	1.4254 .	-0.0668	0.175407; C22-SI1-C35-C40
38	39	40	41	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C22-C23-C24-H16
38	39	40	42	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C22-C23-C24-C25
38	39	48	46	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C22-C23-C28-C27
38	39	48	49	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C22-C23-C28-H20
39	40	42	43	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C23-C24-C25-H17
39	40	42	44	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C23-C24-C25-C26
39	48	46	44	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C23-C28-C27-C26
39	48	46	47	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C23-C28-C27-H19
40	39	48	46	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C24-C23-C28-C27
40	39	48	49	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C24-C23-C28-H20
40	42	44	45	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; C24-C25-C26-H18
40	42	44	46	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000; C24-C25-C26-C27
41	40	39	48	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; H16-C24-C23-C28
41	40	42	43	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; H16-C24-C25-H17
41	40	42	44	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; H16-C24-C25-C26
42	40	39	48	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; C25-C24-C23-C28
42	44	46	47	3 30.33400	0.00000	-30.33400	0.00000	0.00000 0	0.00000 ; C25-C26-C27-H19
42	44	46	48	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C25-C26-C27-C28
43	42	44	45	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H17-C25-C26-H18
43	42	44	46	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H17-C25-C26-C27
44	46	48	49	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C26-C27-C28-H20
45	44	46	47	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H18-C26-C27-H19
45	44	46	48	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H18-C26-C27-C28
47	46	48	49	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H19-C27-C28-H20
50	1	2	3	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1- C1- C2
50	1	2	14	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1- C1- C8
50	1	38	26	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1-C22-C15
50	1	38	39	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1-C22-C23
50	1	61	62	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1-C35-C36
50	1	61	70	3 -47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407 ; C29-SI1-C35-C40
50	51	53	54	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C29-C30-C31-H22
50	51	53	55	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C29-C30-C31-C32
50	59	57	55	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C29-C34-C33-C32
50	59	57	58	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C29-C34-C33-H24
51	50	59	57	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C30-C29-C34-C33
51	50	59	60	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C30-C29-C34-H25
51	53	55	56	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C30-C31-C32-H23
51	53	55	57	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C30-C31-C32-C33
52	51	50	59	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H21-C30-C29-C34
52	51	53	54	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H21-C30-C31-H22
52	51	53	55	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H21-C30-C31-C32
53	51	50	59	3 30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C31-C30-C29-C34

53	55	57	58	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C31-C32-C33-H24
53	55	57	59	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C31-C32-C33-C34
54	53	55	56	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H22-C31-C32-H23
54	53	55	57	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H22-C31-C32-C33
55	57	59	60	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C32-C33-C34-H25
56	55	57	58	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H23-C32-C33-H24
56	55	57	59	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H23-C32-C33-C34
58	57	59	60	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H24-C33-C34-H25
61	1 2	2 3	3		-47.27800	-1.20353	0.06301	1.4254 -	-0.06680 0	.175407; C35-SI1- C1- C2
61	1 2	2 14	4 3		-47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407; C35-SI1- C1- C8
61	1 38	26	5 3		-47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407; C35-SI1-C22-C15
61	1 38	39	3		-47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407; C35-SI1-C22-C23
61	1 50	51	3		-47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407; C35-SI1-C29-C30
61	1 50	59	3		-47.27800	-1.20353	0.06301	1.4254	-0.06680	0.175407; C35-SI1-C29-C34
61	62	64	65	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C35-C36-C37-H27
61	62	64	66	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C35-C36-C37-C38
61	70	68	66	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C35-C40-C39-C38
61	70	68	69	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; С35-С40-С39-Н29
62	61	70	68	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C36-C35-C40-C39
62	61	70	71	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C36-C35-C40-H30
62	64	66	67	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; C36-C37-C38-H28
62	64	66	68	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C36-C37-C38-C39
63	62	61	70	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H26-C36-C35-C40
63	62	64	65	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H26-C36-C37-H27
63	62	64	66	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H26-C36-C37-C38
64	62	61	70	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C37-C36-C35-C40
64	66	68	69	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000; С37-С38-С39-Н29
64	66	68	70	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C37-C38-C39-C40
65	64	66	67	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H27-C37-C38-H28
65	64	66	68	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H27-C37-C38-C39
66	68	70	71	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; C38-C39-C40-H30
67	66	68	69	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H28-C38-C39-H29
67	66	68	70	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H28-C38-C39-C40
69	68	70	71	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000 ; H29-C39-C40-H30

[dihedrals]; impropers

; treated as propers in GROMACS to use correct AMBER analytical function

;i	j	k	1	func	phase	kd	pn
1	3	2	14	1	180.00	4.60240	2 ; SI1- C2- C1- C8
1	39	38	26	1	180.00	4.60240	2 ; SI1-C23-C22-C15
1	51	50	59	1	180.00	4.60240	2; SI1-C30-C29-C34
1	62	61	70	1	180.00	4.60240	2; SI1-C36-C35-C40
3	6	4	5	1	180.00	4.60240	2 ; C2- C4- C3- H1
3	10	12	13	1	180.00	4.60240	2 ; С2- С6- С7- Н5
4	8	6	7	1	180.00	4.60240	2 ; C3- C5- C4- H2

4	12	3	2	1	180.00	4.60240	2 ; C3- C7- C2- C1
6	10	8	9	1	180.00	4.60240	2 ; С4- С6- С5- Н3
8	12	10	11	1	180.00	4.60240	2 ; C5- C7- C6- H4
15	2	14	26	1	180.00	4.60240	2 ; C9- C1- C8-C15
15	18	16	17	1	180.00	4.60240	2; С9-С11-С10- Н6
15	22	24	25	1	180.00	4.60240	2; C9-C13-C14-H10
16	20	18	19	1	180.00	4.60240	2 ; С10-С12-С11- Н7
16	24	15	14	1	180.00	4.60240	2 ; C10-C14- C9- C8
18	22	20	21	1	180.00	4.60240	2 ; С11-С13-С12- Н8
20	24	22	23	1	180.00	4.60240	2 ; С12-С14-С13- Н9
27	30	28	29	1	180.00	4.60240	2; C16-C18-C17-H11
27	34	36	37	1	180.00	4.60240	2; C16-C20-C21-H15
27	38	26	14	1	180.00	4.60240	2 ; C16-C22-C15- C8
28	32	30	31	1	180.00	4.60240	2; C17-C19-C18-H12
28	36	27	26	1	180.00	4.60240	2;C17-C21-C16-C15
30	34	32	33	1	180.00	4.60240	2; C18-C20-C19-H13
32	36	34	35	1	180.00	4.60240	2; C19-C21-C20-H14
39	42	40	41	1	180.00	4.60240	2;C23-C25-C24-H16
39	46	48	49	1	180.00	4.60240	2; С23-С27-С28-Н20
40	44	42	43	1	180.00	4.60240	2; C24-C26-C25-H17
40	48	39	38	1	180.00	4.60240	2 ; C24-C28-C23-C22
42	46	44	45	1	180.00	4.60240	2; С25-С27-С26-Н18
44	48	46	47	1	180.00	4.60240	2; С26-С28-С27-Н19
50	53	51	52	1	180.00	4.60240	2; C29-C31-C30-H21
50	57	59	60	1	180.00	4.60240	2; C29-C33-C34-H25
51	55	53	54	1	180.00	4.60240	2; C30-C32-C31-H22
53	57	55	56	1	180.00	4.60240	2; С31-С33-С32-Н23
55	59	57	58	1	180.00	4.60240	2; С32-С34-С33-Н24
61	64	62	63	1	180.00	4.60240	2; С35-С37-С36-Н26
61	68	70	71	1	180.00	4.60240	2; С35-С39-С40-Н30
62	66	64	65	1	180.00	4.60240	2; С36-С38-С37-Н27
64	68	66	67	1	180.00	4.60240	2; С37-С39-С38-Н28
66	70	68	69	1	180.00	4.60240	2; C38-C40-C39-H29

Supplementary References

(1) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. Journal of Chemical Theory and Computation 2008, 4, 435.

(2) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.

(3) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. *Chem. Mater.* **2003**, *15*, 1535.

(4) Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z. J. Phys. Chem. A 2014, 118, 9094.

(5) Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. Chem. Asian J. 2015, 10, 2154.

(6) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.

(7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M. L., X.; ; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;

Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J.

J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;

Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,

J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;

Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian, Inc.* Wallingford CT, **2009**. (8) Ryckaert, J.-P.; Bellemans, A. *Faraday Discuss. Chem. Soc.* **1978**, *66*, 95.

(9) Zhang, T.; Ma, H.; Niu, Y.; Li, W.; Wang, D.; Peng, Q.; Shuai, Z.; Liang, W. J. Phys. Chem. C 2015, 119, 5040.

- (10) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.
- (11) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollmann, P. A. J. Am. Chem. Soc. 1993, 115, 9620.
- (12) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
- (13) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.

(14) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101.

- (15) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. *J. Chem. Phys.* 1984, *81*, 3684.
 (16) Berendsen, H.; Postma, J.; van Gunsteren, W.; Hermans, J. In *Intermolecular Forces*; Reidel: Dordrecht: 1981, p 331.
- (17) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
- (18) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
- (19) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.
- (20) Rudnick, J.; Gaspari, G. J. Phys. A: Math. Gen. 1986, 19, L191.
- (21) Zifferer, G. J. Chem. Phys. 1995, 102, 3720.
- (22) Noguchi, H.; Yoshikawa, K. J. Chem. Phys. 1998, 109, 5070.
- (23) Lin, C.-M.; Chen, Y.-Z.; Sheng, Y.-J.; Tsao, H.-K. React. Funct. Polym. 2009, 69, 539.
- (24) Zhang, J.; Lu, Z.-Y.; Sun, Z.-Y. Soft Matter 2011, 7, 9944.
- (25) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143.
- (26) Aaqvist, J.; Warshel, A. Chem. Rev. 1993, 93, 2523.
- (27) Lin, H.; Truhlar, D. G. Theor. Chem. Acc. 2007, 117, 185.

(28) Kwon, O.; Coropceanu, V.; Gruhn, N. E.; Durivage, J. C.; Laquindanum, J. G.; Katz, H. E.; Cornil, J.; Bredas, J. L. *J. Chem. Phys.* 2004, *120*, 8186.

(29) Sánchez-Carrera, R. S.; Coropceanu, V.; da Silva Filho, D. A.; Friedlein, R.; Osikowicz, W.; Murdey, R.; Suess, C.; Salaneck, W. R.; Brédas, J.-L. *J. Phys. Chem. B* **2006**, *110*, 18904.