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S1 First-principles molecular dynamics calculations of α-graphyne 

We carried out first-principles molecular dynamics calculations at the NVT ensemble for α-

graphyne at 600 K in a 32-atom cell (Fig. S1). The structure did not collapse in 3.5 ps. The atom 

structure of α-graphyne at 0 ps and 3.5 ps are shown in Fig. S1. 

 

S2 Derivations of the H matrix elements 

For a periodic system, under Tight Binding frame, the Bloch wave functions generally are 

written as:  
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where, nR  is the vector of the origin of the n-th cell, ir  is the vector of the i-th atom in the n-th 

cell relative to nR , ( )i n i  r R r  is the wave function of the i-th atom in the n-th cell, and iC

are the coefficients required to be fixed further. The eq. (1) can be deduced further as: 
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Fig. S1 Atom structure of α-graphyne at 0 ps (a) and 3.5 ps (b). The 

upper figures are top view, and the lower figures are side view.  
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where ii

i iC C e
 

k r
 still are the coefficients required to be fixed further. The derivation of eq. (2) 

is based on the fact that ri  and iC  are constants for various cells. Based on eq. (2), the basis 

Bloch wave functions can be written as 
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In eq. (3), for the same cell, different atoms possess the same exponential factors ni
e

k R , which 

makes the further calculations easier. 

Similarly, for α-graphyne, we chose basis Bloch wave functions as eq. (5) and (6) in the 

manuscript. Then the matrix elements of H (defined in the manuscript) can be obtained (the cells 

shown in Fig. 1(d) in the manuscript are adopted): 
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The other matrix elements can be obtained similarly. The rules about the exponential factors 

are that the exponential factor is 1 when the two wave functions (used to form the corresponding 

matrix element) are in the same cell, or ( )n mi
e

 k R R  when the two functions are different cells, 

where nR  and mR are the vectors of the origins of the cells located in by the latter wave function 
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and the former wave function, respectively. (The latter wave function and the former wave 

function are the two wave functions to be used to form the corresponding matrix element.)  

We found that if the basis Bloch wave functions like eq. (3) are adopted, the corresponding 

Hamilton matrix elements will be simple and the exact positions of the atoms are not required. 

The only required information is the neighbors of the atoms and the corresponding hopping 

energy. Our previous work
1
 adopted the similar form for the basis Bloch wave functions. 

S3 Atom structures of C2Si6-SGY, C2C3Si3-SGY with lower energy 

We constructed C2Si6-SGY and C2C3Si3-SGY models by modifying the configuration of α-

graphyne, and carried out geometry optimization. Atom structures with lower energy were 

obtained as shown in Fig. S2. The corresponding lattice parameters and formation energy are 

listed in in Table S1. The definitions of formation energy fE and fE  are in the manuscript (MS).   

                                       

Fig. S2 (color online) Atom structures of C2Si6-SGY (a) and C2C3Si3-SGY (b).  
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S4 Origin of electronic structures of C2R3S3-SGY  

If the chain atoms of α-graphyne are substituted by two different types of atoms –R–S–, the 

system dubbed C2R3S3-SGY is acquired. Now we discuss whether C2R3S3-SGY possesses DCs 

or not. 

Regarding to equation (2-4) in the MS, as for one atom chain, the bonding states and anti-

bonding states can be acquired by solving the eigenvectors and eigenvalues of the matrix 
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                                                                 (6) 

where RE
 
and SE

 
are onsite energy of R and S atoms respectively, R St   is the hopping energy 

between R and S atoms.  

The eigenvalues are 

( ) / 2R SE E  ,    ( ) / 2R SE E                                                       (7) 

where  

 
221

4
2

R S R SE E t                                                         (8) 

The corresponding bonding states and anti-bonding states are  

Table S1. Lattice parameters (a, b) and formation energy of C2Si6-SGY and 

C2C3Si3-SGY. 

 a (Å) b (Å) fE (eV) 
fE  (eV) 

C2Si6-SGY 5.22 5.22 5.52 -0.37 

C2C3Si3-SGY 7.88 7.88 6.22 -1.34 
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( )b n n n
c a R b S   ,   

*( )a n n
c b R a S                            (9) 

where  

R Sa t  , ( ) / 2R Sb E E                                                         (10) 

c is a normalization factor. 

From eq. (8) and (10), we obtain the following statement given that 0R St   : 

R SE E a b                                                       (11) 

Then, at K point, the corresponding H matrix elements between A
k  

and 2b k
 ( 2a k

) as well 

as between B
k

and 3b k
 ( 3a k

) listed in Table 3 of MS should change into 
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where C Rt  , C St   are the hopping energy between carbon atoms at A and R atoms as well as 

between carbon atoms at B and S atoms, respectively. 

Then, the H matrix of the first and second group at K point are  
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where AE  and BE
 
are the onsite energy of carbon atom at A and at B, respectively. The matrix 

(12) and (13) have 3 eigenvalues respectively, forming 3 pairs of eigenvalues similarly to the 
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analysis in MS. To form DC band structures, the middle pair of eigenvalues should be 

degenerated. This can be satisfied by two ways. The first way is that the two matrixes are the 

same except for phase. This requires the following equations 

* * * *

* *

3 3

3 3

A B

C R C S

C R C S

E E

c a t c b t

c bt c at

 

 





  


  


                                                      (14) 

The second way is that the two matrixes are not the same, but after diagonalization, AE  and BE  

remain unchanged. Meanwhile,
 A BE E , this requires the following equations 
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The equation (14) requires 
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The equation (15) requires  
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From equation (11), the condition (16) is equivalent to 
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and the condition (17) is equivalent to 
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A B R SE E E E  

                                                                     

(19)
 

Because R and S are of different type, RE  and SE are not the same, then the conditions (18) or 

(19) are not satisfied in general, and then C2R3S3-SGY does not possess DC band structure 

generally. 

S5 Positions of the Fermi surfaces of α-N graphyne derivatives 

To determine which bands go through the Fermi surface, we make the following analysis:  

(1) When N is even, there will be 3N+3 σ bonds in one cell, then 6N+6 electrons are filled in 

the σ bond states; Except for pz orbitals, there still one π ( p ) orbital for each atom in the chains. 

The couplings of p orbitals form N states for each chain, where N/2 states are bonding states 

and 3N/2 states are bonding states for three C chains filled by 3N electrons. Because there are 

4(3N+2) electrons in one cell, there are 4(3N+2)-(6N+6)-3N=3N+2 electrons remained, which 

should be filled into the pz orbitals. Because there are 3N+2 pz orbitals in one cell, so the half of 

pz orbitals are filled.  

(2) When N is odd, the p  orbitals of each chain form N states, where (N-1)/2 states are 

bonding states, which should be filled by (N-1) electrons. Then there are 4(3N+2)-(6N+6)-3(N-

1)=3N+5 electrons remained. The middle energy level of N states formed by the p  orbitals in 

one chains may be filled by electrons or empty. There are three such levels due to three C chains 

in a cell. These three levels (“3 p middle levels”) would split off and become deformed a little 

due to the couplings with vertex atoms. On the other hand, the 3N+2 pz orbitals will form 3N+2 

bands, where (3N+1)/2 bands are bonding states filled by (3N+1) electrons, and the middle band 

should be close to the “3 p middle levels” because they are all the middle level from the π 

couplings of p orbitals. So far, the number of the remaining electrons is (3N+5)-(3N+1) = 4. 

These four remaining electrons can fill into the four bands (one is the middle band from pz 
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orbitals, and the other three are the “3 p  middle levels”). Because these 4 bands are close, the 

Fermi surface would be located near the middle band from pz orbitals.  

The DF calculations by Özcelik et al.
2
, Longuinhos et al.

3
, and Sun et al.

4
 support our 

discussions described above. 
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