One-step fabrication of large-area ultrathin MoS₂ nanofilms with high catalytic activity for photovoltaic devices

Jia Liang,^a Jia Li,^b Hongfei Zhu,^a Yuxiang Han,^b Yanrong Wang,^a Caixing Wang,^a Zhong Jin,^a* Gengmin Zhang,^b* and Jie Liu^{a,c}*

^a Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

^b Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China

^c Department of Chemistry, Duke University, Durham, North Carolina 27708, USA

*Corresponding authors.

Email addresses of corresponding authors: <u>zhongjin@nju.edu.cn</u> (Z. Jin); <u>zgmin@pku.edu.cn</u> (G. M. Zhang); <u>j.liu@duke.edu</u> (J. Liu)

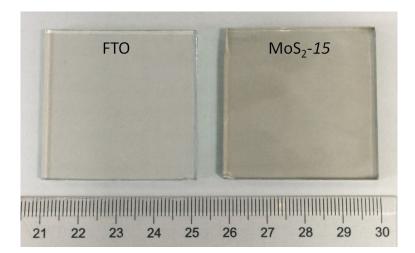


Figure S1. Optical photographs of pristine FTO substrate (left) and MoS_2 -15 sample (right) with a large area of 4 cm × 4 cm.

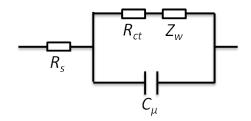
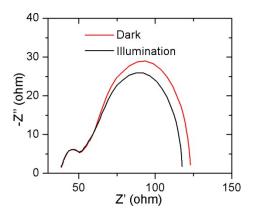
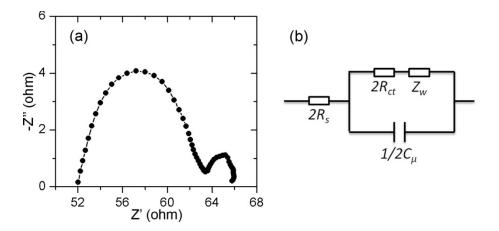
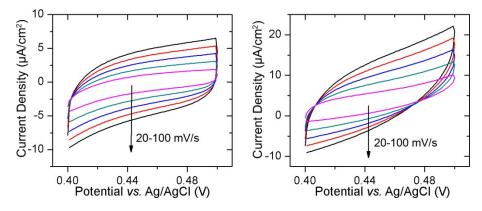




Figure S2. Equivalent circuit model of EIS analysis for the DSSCs.


Figure S3. Nyquist plots of MoS₂-*15* based DSSC under illumination (black line) and dark condition (read line).

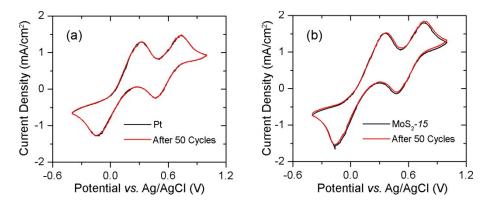

Figure S4. (a) Nyquist plot of symmetrical electrochemical cell with the structure of MoS₂-*15*/electrolyte/MoS₂-*15*. (b) Equivalent circuit model of the symmetrical electrochemical cell.

Table S1. EIS parameters of the symmetrical electrochemical cell with a structure of MoS_2 -
15/electrolyte/ MoS_2 -15.

Electrodes	$2R_s/\Omega$	$2R_{ct}/\Omega$	$1/2C_{\mu}/\mu\mathrm{F}$
MoS ₂ -15	52.5	10.1	16.1

Figure S5. CV curves of (a) Pt and (b) MoS₂-15 based counter electrodes taken in a selected potential range without Faradaic current under different scanning rates (20, 40, 60, 80, and 100 mV/s), respectively.

Figure S6. CV curves of (a) Pt and (b) MoS₂-*15* based counter electrodes before and after 50 cycles with a scanning rate of 100 mV/s, respectively.