Supplementary Information for:

Gaseous Product Mixture from Fischer-Tropsch Synthesis as an Efficient Carbon Source for Low Temperature CVD Growth of Carbon Nanotube Carpets

Haider Almkhelfe,^a Jennifer Carpena-Núñez,^b Tyson C. Back,^b and Placidus B. Amama*,^a

^aDepartment of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA. E-mail: <u>pamama@ksu.edu</u>; Tel: 785-532-4318; Fax: 785-532-7372

^bAir Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA

Figure List

Figure S1. Growth results from Fe-Cu catalysts with the sequence of Fe and Cu depositions reversed to investigate the effect of the different stacking order of metallic layers on CNT carpet growth.

Figure S2. XPS survey scans of the as-deposited Fe and Fe-Cu catalysts with the optimal Cu thickness. The nominal thickness of the Fe, Al_xO_y , and Cu films were 1.3, 30, and 0.12 nm, respectively; all the films were deposited by an ion beam sputter deposition and etching system.

Figure S3. Raman spectra of CNT carpets grown on a 2 nm-thick Fe catalyst deposited directly on Al foil (A) and on Al foil with a 30 nm-thick amorphous Al_xO_y barrier layer (B) at 450°C.

Figure S4. Temperature profile of the CVD reactor during low-temperature growth at 400°C.

Figure S5. Temperature profile of the CVD reactor during low-temperature growth at 500°C.

Figure S6. TEM images of CNT carpets grown from Fe and Fe-Cu at 400°C.

Figure S7. TEM images of CNT carpets grown from Fe and Fe-Cu at 500°C.

Figure S1. Raman spectra of CNT carpets from Fe-Cu catalysts with the sequence of Fe and Cu depositions reversed to investigate the effect of the different stacking order of metallic layers on CNT carpet growth properties. Fe-Cu/AlxOy catalysts with a thin Cu layer sandwiched between Fe and AlxOy show higher I_G/I_D ratio

Figure S2. XPS survey scans of Fe (A) and Fe-Cu catalysts with the optimal Cu thickness after CNT carpet growth. The nominal thickness of the Fe, Al_xO_y , and Cu films were 1.3, 30, and 0.12 nm, respectively; all the films were deposited by an ion beam sputter deposition and etching system.

Figure S3. Raman spectra of CNT carpets grown on a 2 nm-thick Fe catalyst deposited directly on Al foil (A) and on Al foil with a 30 nm-thick amorphous Al_xO_y barrier layer (B) at 450°C.

Figure S4. Temperature profile of the CVD reactor during low-temperature growth at 400°C.

Figure S5. Temperature profile of the CVD reactor during low-temperature growth at 500°C.

Figure S6. TEM images of CNT carpets grown from Fe (A and B,) and Fe-Cu (C and D) at 400°C.

Figure S7. TEM images of CNT carpets grown from Fe (A, B, and C) and Fe-Cu (D, E, and F) at 500°C.