Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Supporting Information:

Processable 2D materials beyond graphene: MoS₂ liquid crystals and fibres

Rouhollah Jalili*a, Sima Aminorroaya-Yamini *b, Tania M. Benedetti a, Seyed Hamed Aboutalebi c, Yunfeng Chao a, Gordon G. Wallace a, and David L. Officer a

Email: rjalili@uow.edu.au, sima@uow.edu.au

- a. Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
- b. Institute for Superconducting and Electronic Materials, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
- c. Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

Experimental:

A stoichiometric ratio of molybdenum (99.9975%, Alfa Aesar) and sulfur powders (99.9995%, Alfa Aesar) were sealed in a quartz tube and heated to 1100°C in a furnace slowly and was kept at that temperature for a week. 0.1 mg of the achieved crystals or a large natural crystal (Manchester Nanomaterials) were mixed with 10 ml n-butyllithium solution (2.5 M in hexanes, Sigma Aldrich), sealed in an argon-filled Teflon round bottle and stirred slowly for 48 h. The mixture was dispersed in a bath sonicator for 1 h, and then 100 ml water was added slowly to react and exfoliate the lithium intercalated compound. The dispersion was centrifuged at 11 krpm for 15 min to remove non-exfoliated particles as sediment. The dispersion was placed in a dialysis bag and kept for 2 weeks.

SEM analyses were carried out by first depositing MoS_2 sheets from their dispersions on pre-cleaned and silanized silicon wafers (300 nm SiO2 layer). As deposited MoS_2 sheets were directly examined by scanning electron microscopy (JEOL JSM-7500FA) and optical microscopy. X-ray diffraction studies were performed using a powder XRD system (Philips1825) with Cu KR radiation (λ = 0.154 nm) operating at 40 keV and with a cathode current of 20 mA. The birefringence of the MoS_2 dispersion at 0.5 mg ml⁻¹ was examined by

polarized optical microscopy (Leica DM EP) operated in transmission mode. Raman and polarized Raman spectra were recorded on a Jobin Yvon Horiba HR800 Raman microscope using a 632 nm laser line. The rheological properties of the MoS₂ dispersion was investigated using a rheometer (AR-G2 TA Instruments) with a conical shaped spindle (angle: 2°, diameter: 60 mm): approximately 2.3 ml of the MoS₂ dispersion at a concentration of 0.5 mg ml⁻¹ was loaded into the rheometer with great care taken not to shear or stretch the sample. Shear stress and viscosity were measured at shear rates from 0.01 to 10 s⁻¹ using logarithmic steps for a complete (ascending and descending) cycle.

In order to prepare a wet-spinnable dispersion of MoS₂ nanosheets, 50 ml of the original dispersion (0.5 mg ml⁻¹) was filtered through a cellulose membrane then redispersed in 2.5 ml of water to make up a concentration of 10 mg ml⁻¹. Wet-spinning was carried out using a technique we developed previously ¹. Briefly, the dispersion was loaded on a 10 ml syringe then was injected using a gauge 21 needle into a coagulation bath containing 1 wt% CaCl₂ in a mixture of water and acetone (30:70 vol%). The coagulated fibers were collected and dried after washing with ethanol and water.

Supporting Figures:

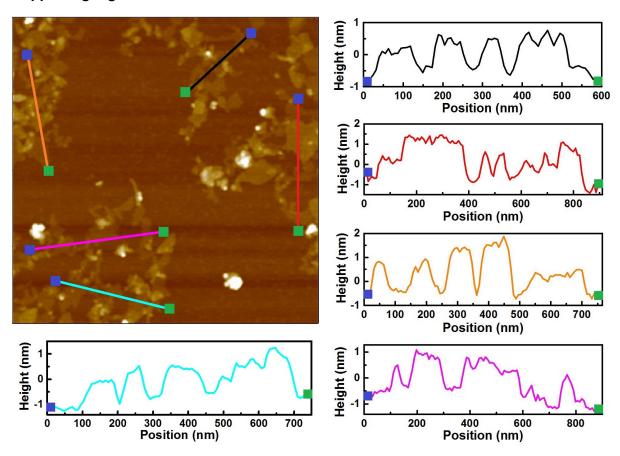


Figure S1. AFM analysis of MoS_2 nanoplatelet deposited on a silicon wafer along with the height profile of different nanosheets confirming thickness of ~ 1 nm.

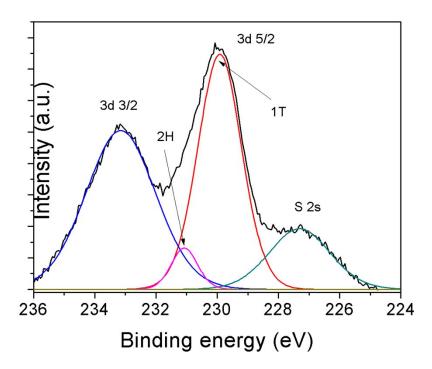


Figure S2, X-ray photoelectron spectrum from the Mo 3d region of exfoliated MoS_2 nanosheets. The contributions of the 1T and 2H phase components in the Mo 3d spectrum are indicated. The as exfoliated MoS_2 nanosheets comprise the predominantly metallic, 1T phase.

References:

1- R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, R. L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A. I. Minett, J. M. Razal and G. G. Wallace, *Adv. Funct. Mater.*, 2013, **23**, 5345-5354.