Charge transport through dicarboxylic-acid-terminated alkanes

bound to graphene-gold nanogap electrodes

Longlong Liu,^{a,b} Qian Zhang,^a Shuhui Tao,^a Cezhou Zhao,^c Eman Almutib, ^{d,e} Qusiy

Al-Galiby, d,e Steven W. D. Bailey, d Iain Grace, d Colin J. Lambert, d Jun Du*,b Li

Yang*,a

a Department of Chemistry, Xi'an-Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China. Email: li.yang@xjtlu.edu.cn

b Department of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China. Email:

dujune@cqu.edu.cn

c Department of Electrical Electronic Engineering, Xi'an-Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China.

d Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.

e Department of Physics, Al-Qadisiyah University, Al-Qadisiyah, Iraq.

The dependence of transport properties on molecular length of the dicarboxylicacid-terminated alkane in a graphene-molecule-gold junction (Gr-Au):

Figure S1. For the structures in Figure 5a-c, Figure S1 shows a) the transmission coefficients as a function of energy of the systems containing the dicarboxylic-acid-terminated alkane molecule with the

lengths n=2, n=4 and n=6 of CH_2 attached to the graphene-gold electrodes, b) demonstrates the room temperature electrical conductances over a range of Fermi energies, c) shows the room-temperature tunnelling factor β_N as a function of Fermi energy, and d) the logarithm of conductance versus the molecular length of the dicarboxylic-acid-terminated alkane.

 Table S1. A comparison between the experimental measurements and DFT-CA calculations of the structures such as those shown in Figure 5.

Molecules -	Conductance(G=I/V, nS)	
	Theoretical value, $E_F = 0.65 \text{ eV}$	experimental value
HOOC(CH ₂) ₂ COOH	38.5	15.6
HOOC(CH ₂) ₄ COOH	5.3	5.0
HOOC(CH ₂) ₆ COOH	2.2	1.08

Table S1 shows the theoretical and experimental conductances of three graphenemolecule-Au junctions. The conductances decrease with increasing molecular length.

Relaxed structures of dicarboxylic-acid-terminated alkanes placed between two gold electrodes (Au-Au):

Figure S2. (a, b and c) show the optimized geometries of systems containing the dicarboxylic-acid-terminated alkanes of lengths (n=2, 4 and 6) connected to two gold electrodes.

Figure S3. For the Au-molecule-Au structures in Figures S2a-c, Figure S3 shows a) the transmission coefficients as a function of energy b) the room temperature electrical conductances over a range of Fermi energies, c) the room-temperature attenuation factor β_N as a function of Fermi energy, and d) the logarithmic conductance versus the molecular length.

Theoretical results for defective graphene

Figure S4. a) A perfect graphene sheet and b) a defected graphene sheet.

Figure S5. (a, b and c) show the optimized geometries of systems containing the dicarboxylic-acid-terminated alkanes of lengths (n=2, 4, and 6) connected to a defected graphene sheet. (d) Shows the detail of the defected graphene sheet.