Supporting Information

Highly Transparent and Flexible Biobased Polyimide/TiO₂ and ZrO₂ Hybrid Films with Tunable Refractive Index, Abbe Number, and Memory Properties

Tzu-Tien Huang,^{‡a} Chia-Liang Tsai,^{‡a} Seiji Tateyama,^b Tatsuo Kaneko,^{*b} and Guey-Sheng Liou^{*a}

^a Functional Polymeric Materials Laboratory, Institute of Polymer Science and

Engineering, National Taiwan University, Taipei, Taiwan

^b Research Area of Energy and Environment, Japan Advanced Institute of Science and

Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Tel: +886-2-336-5315; E-mail: gsliou@ntu.edu.tw and kaneko@jaist.ac.jp.

List of Contents for Supplementary Material:

Fig. S1. IR spectrum of 4ATA-PI film.	2
Fig. S2. ¹ H NMR spectra of 4ATA-PI in DMSO- <i>d</i> ₆	3
Fig. S3. IR spectra of 4ATA-PITi50 and 4ATA-PIZr50 hybrid materials.	4
Fig. S4. IR spectra of 4ATA-PITi30 at different curing temperatures.	5
Fig. S5. IR spectra of 4ATA-PIZr30 at different curing temperatures	6
Fig. S6. TGA traces of 4ATA-PI/TiO ₂ and 4ATA-PI/ZrO ₂ hybrid materials (a) and	
(c) in N ₂ , (b) and (d) in air.	7
Fig. S7. TMA curves of (a) 4ATA-PI/TiO ₂ and (b) 4ATA-PI/ZrO ₂ hybrid films with	
the heating rate of 10 °C/min.	8
Fig. S8. UV-vis absorption spectrum of 4ATA-PI film.	9
Fig. S9. Cyclic voltammetric diagram of the 4ATA-PI films on an ITO-coated glass	
substrate.	10
Fig. S10. The stability of memory devices in the ON and OFF states of the	
ITO/4ATA-PI hybrid materials $(50 \pm 3nm)/Al$ devices (a) 4ATA-PITi30	
and (b) 4ATA-PIZr30.	11

Fig. S1. IR spectrum of 4ATA-PI film.

Fig. S2. ¹H NMR spectra of **4ATA-PI** in DMSO- d_6 .

Fig. S3. IR spectra of 4ATA-PITi50 and 4ATA-PIZr50 hybrid materials.

Fig. S4. IR spectrum of 4ATA-PITi30 at different curing temperatures.

Fig. S5. IR spectrum of **4ATA-PIZr30** at different curing temperatures.

Fig. S6. TGA traces of **4ATA-PI/TiO**₂ and **4ATA-PI/ZrO**₂ hybrid materials (a) and (c) in N_2 , (b) and (d) in air.

Fig. S7. TMA curves of (a) **4ATA-PI/TiO**₂ and (b) **4ATA-PI/ZrO**₂ hybrid films with the heating rate of 10 °C/min.

Fig. S8. UV-vis absorption spectrum of 4ATA-PI film.

Fig. S9. Cyclic voltammetric diagram of the **4ATA-PI** film on an ITO-coated glass substrate.

Fig. S10. The stability of memory devices in the ON and OFF states of the ITO/**4ATA-PI** hybrid materials (50 ± 3nm)/AI devices (a) **4ATA-PITi30** and (b) **4ATA-PIZr30**.