SUPPORTING INFORMATION

Hydrogen bonding vs molecule-surface interactions in 2D self-assembly of [C60]fullerenecarboxylic acids

Mohamed A. Mezour, Rachelle M. Choueiri, Olena Lukoyanova, R. Bruce Lennox^{*}, Dmitrii F. Perepichka ^{*}

Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal (QC) H3A 0B8, Canada

Figure S1. (a) $10 \times 10 \text{ nm}^2$ STM micrograph showing an C₆₁(CO₂H)₂ admolecule on top of C₆₁(CO₂H)₂ monolayer at phenyloctane/Au (111) interface. (b) cross section profile along the blue line in (a) $V_b = 600 \text{ mV}$, $I_t = 0.2 \text{ nA}$

Figure S2. STM image showing the formation hexagonal close network of C₆₀ on top of bare Au(111). (a) $60 \times 60 \text{ nm}^2$, (a) $31 \times 31 \text{ nm}^2$. The unit cell is: $a=b=1.07\pm 0.1\text{ nm}$; $\alpha=63\pm4^\circ$. $V_b=700 \text{ mV}$, $I_t=0.3 \text{ nA}$.

Table S1.	Calculated	binding	energies	for	$C_{61}(CO_2H)_2$ (dimers	and	trimer,	using	M06-2X	and
dispersion-correcte	ed (GD3BJ)	B3LYP	functiona	ls, w	vith 6-31G(d)	basis se	et.				

	Total Bindi	ng energy, ^{a)}	VdW ener	$rgy,^{b)} E_{vdW}$	H bonding energy per			
	E _{tot} (kcal/mol)		(kcal	/mol)	molecule, $E_{\text{H-b}}$ (kcal/mol)			
	M06-2X	B3LYP	M06-2X	B3LYP	M06-2X	B3LYP		
Dimer I	-12.4	-16.1	-1.5	-4.3	-10.8	-11.7		
Dimer II	-11.0	-12.3	-	-	-11.0	-12.3		
Dimer III	-9.8	-11.4	-	-	-9.8	-11.4		
Trimer	-14.8	-21.4	-4.3	-9.5	-10.6	-11.9		

a) $E_{tot} = E(cluster) - nE(monomer)$, where n is the number of monomers in a cluster. b) This was estimated as a total binding energy of corresponding (dimer/trimer) clusters of unsubstituted C₆₀ fullerene. c) $E_{H-b} = (E_{tot} - E_{vdW})/n$, where E_{vdW} was calculated from the analogues clusters lacking COOH groups.

Figure S3. (a), (b), and (c) Consecutive STM images showing the stability of C_{61} -(CO₂H)₂ dimers. (13.8 × 13.8 nm²). (d) and (e) a representative 81 × 81 nm STM image of C_{61} -(CO₂H)₂ dimers on PFBT/Au at 0° and 90° scanning angle respectively. $V_b = 800 \text{ mV}$, $I_t = 0.15 \text{ nA}$.

Figure S4. (a) Representative $70 \times 70 \text{ nm}^2$ STM images of C₆₁-(CO₂Et)₂ on PFBT/Au. (b) High resolution STM image showing isolated C₆₁-(CO₂Et)₂ molecules. $31 \times 31 \text{ nm}^2$. $V_b = 700 \text{ mV}$, $I_t = 0.15 \text{ nA}$

Figure S5. (a) STM images showing domains of a C₆₆-(CO₂H)₁₂ monolayer on PFBT/Au (111). (b) STM image showing one domain of C₆₆-(CO₂H)₁₂.60 × 60 nm². (c) Cross sectional profile along the blue line in (b). $V_b = 800 \text{ mV}$, $I_t = 0.2 \text{ nA}$.

Figure S6. (a) and (b) STM images of phenyloctane/ BT@Au(111) in the presence of $C_{61}(CO_2H)_2$ (a few scatterd clusters are visible). 98 × 98 nm² and 60 × 60 nm². (c) STM image of phenyloctane/ BT@Au(111) in the presence of C_{61} -(CO₂Et)₂ (no adsorption). 64 × 64 nm². $V_b = 800$ mV, $I_t = 0.15$ nA.

Figure S7. (a) Representative $18 \times 18 \text{ nm}^2$ STM image of $C_{66}(CO_2H)_{12}$ at phenyloctane/Au (111) interface. (b) Fourier transform (FFT) image of the STM micrograph.