Supplementary Information

Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries

Xiaoming Zhang,^{a,b} Junping Hu,^c Yingchun Cheng,^d Hui Ying Yang,^{*a} Yugui Yao,^{*b} Shengyuan A. Yang^{*a}

^aResearch Laboratory for Quantum Materials and Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore. E-mail: yanghuiying@sutd.edu.sg; shengyuan_yang@sutd.edu.sg

^bSchool of Physics, Beijing Institute of Technology, Beijing 100081, China. E-mail: ygyao@bit.edu.cn ^cSchool of Science, Nanchang Institute of Technology, Nanchang 330099, China

^dKey Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

Contents:

I. Figure S1;

II. Tables S1-2 and discussions;

III. References.

I. Figure S1

Fig. S1 (a) Comparison of Li adsorption energies between borophene and typical 2D anode materials. The adsorption energies for per Li are calculated from similar size of host materials, and some data are taken from literatures¹⁻⁷. (b) The adsorption energy for per Li (or Na) on borophene as a function of the metal atoms concentration.

II. Tables S1-2 and discussions

For a certain reaction,

$$Host + xM^+ + xe^- \longleftrightarrow M_rHost$$
 (1)

where *Host* represents the host electrode material, *M* is for the adtom Li or Na, and *x* is the number of adsorbed atoms. The maximum capacity (C_M) of an electrode material is usually estimate as

$$C_{M} = x_{m}F / M_{\text{Host}} \quad (2)$$

Where x_m represents the maximum electrons involving the electrochemical process, F derives from the Faraday constant with the value of 26798 mA h mol⁻¹, and M_{Host} is the mass of host material in g mol⁻¹. Meanwhile, there also some works use another calculating formulation:

$$C_M = x_m F / M_{M_{x_m} \text{Host}} \quad (3)$$

Comparing with equation (2), the only difference is that in equation (3) the mass of adtoms is taken into account.

Here we display the comparisons of Li/Na capacities between borophene and other typical 2D electrode materials by using the equation (2) and (3), respectively. From Tables S1 and S2, we find that: i) most former literatures follow equation (2) to estimate the maximum capacities of the electrode materials, as used in our work; ii) for both calculating strategies, borophenes are several times higher in Li/Na capacities than the typical electrode materials provided.

Table S1 Comparisons of Li capacities between borophene and other typical 2D electrode materials. C_M^a and C_M^b are the maximum capacities calculated from equation (2) and equation (3), and C_M^{ref} are the values used in literatures. The case that literatures follow the values from equation (2) and equation (3) are denoted with light blue and light yellow colors, respectively.

	C_{M}^{a}	C_M^b	C_M^{ref}	Reference
	$(mAhg^{-1})$	$(mAhg^{-1})$	$(mAhg^{-1})$	
β_{12} -borophene	1984	1312	1984	Current work
χ ₃ .borophene	1240	939	1240	Current work
Silicence	954	768	954	Ref. 6
V ₂ C	941	765	941	Ref. 2
MnO ₂	616	591	616	Ref. 7
Nb ₂ C	542	454	542	Ref. 3
Mo ₂ C	526	462	526	Ref. 8
VS ₂	466	415	466	Ref. 9
Graphite	372	339	372	Ref. 10
MoS ₂	335	308	335	Ref. 11
Ti ₃ C ₂	319	273	273	Ref. 12
TiS ₃	279	260	260	Ref. 13
GeS	256	239	256	Ref. 5

	C_M^a	C_M^b	C_M^{ref}	Reference
	$(mA h g^{-1})$	$(mA h g^{-1})$	$(mA h g^{-1})$	
β_{12} -borophene	1984	733	1984	Current work
χ ₃ .borophene	1240	601	1240	Current work
Ca ₂ N	1138	576	1138	Ref. 14
Phosphorene	865	496	865	Ref. 15
GeS	512	355	512	Ref. 5
V ₂ C	470	344	344	Ref. 12
TiS ₂	339	268	339	Ref. 16
Ti ₃ C ₂	319	250	250	Ref. 12
Sr ₂ N	283	228	283	Ref. 14
Nb ₂ C	271	223	271	Ref. 3
NbS ₂	263	219	263	Ref. 16
Mo ₂ C	132	118	132	Ref. 8
MoS ₂	146	128	146	Ref. 17

Table S2 Similar with Table S1 but for the comparisons of Na capacities.

III. References

1. F. Ersan, G. Gökoglu and Ethem Aktürk , *J. Phys. Chem. C*, 2015, **119**, 28648–2865.

2. J. Hu, B. Xu, C. Ouyang, S. A. Yang and Y. Yao, J. Phys. Chem. C, 2014, 118, 24274–24281.

- 3. J. Hu, B. Xu, C. Ouyang, Y. Zhang and S. A. Yang, *RSC Adv.*, 2016, **6**, 27467–27474.
- 4. D. Çakır, C.Sevik, O. Gülserenc and F. M. Peetersa, J. Mater. Chem. A, 2016, 4, 6029-6034.

5. F. Li, Y. Qu and M. Zhao, J. Mater. Chem. A, 2016, 4, 8905-8912.

- 6. G. Tritsaris, E. Kaxiras, S. Meng and E. Wang, Nano Lett., 2013, 13, 2258-2263.
- 7. S. Deng, L. Wang, T. Hou and Y. Li, J. Phys. Chem. C, 2015, 119, 28783-28788.
- 8. Q. Sun, Y Dai, Y. Ma, T. Jing, W. Wei and B. Huang, *J. Phys. Chem. Lett.*, 2016, 7, 937–943.
- 9. Y. Jing, Z. Zhou, C. Cabrera and Z. Chen J. Phys. Chem. C, 2013, 117, 25409–25413.
- 10. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.
- 11. L. David, R. Bhandavat and G. Singh, ACS Nano, 2014, 8, 1759-1770.

 Y. Xie, Y. DallAgnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. Zhuang and P. R. Kent, *ACS Nano*, 2014, 8, 9606–9615.

13. J. Wu, D. Wang, H. Liu, W. Lau and L. Liu, RSC Adv., 2015, 5, 21455-21463.

14. J. Hu, B. Xu, S. A. Yang, S. Guan, C. Ouyang and Y. Yao, *ACS Appl. Mater. Interfaces*, 2015, 7, 24016–24022.

- 15. V. V. Kulish, O. I. Malyi, C. Perssoned and P. Wu, *Phys. Chem. Chem. Phys.*, 2015, 17, 13921-13928.
- 16. E. Yang, H. Ji and Y. Jung, J. Phys. Chem. C, 2015, 119, 26374-26380.
- 17. M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy and N. V. Medhekar, J. Power Sources, 2014, 268, 279–286.