## **Electronic Supplementary Information**

## Flexible hierarchical membranes of WS<sub>2</sub> nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage

Longsheng Zhang,<sup>b</sup> Wei Fan\*<sup>a</sup> and Tianxi Liu\*<sup>a,b</sup>

**Fig. S1** FESEM image of the CNF membrane at low magnification, showing its threedimensional nanofiber network with porous structures and large surface area.

**Fig. S2** Cross-sectional FESEM images of the GCNF membrane at different magnifications. As indexed in (d), carbon nanofibers in the internal portion of GCNF membranes are wrapped by conductive graphene sheath.

**Fig. S3** TEM images of GO sheets, showing that GO sheets are thin, a few microns in size and slightly scrolled on sheet edges.

**Fig. S4** AFM image and the corresponding height profile of GO sheets, verifying that the thickness of single-layered GO sheets is about 1.0~1.1 nm.

Fig. S5 FESEM images of (a, c)  $WS_2/GCNF-1$  and (b, d)  $WS_2/GCNF-3$  hybrid membranes at low and high magnifications, respectively.

Fig. S6 TGA curves of WS<sub>2</sub>, GCNF and WS<sub>2</sub>/GCNF hybrid membranes.

**Fig. S7** (a) Nitrogen adsorption/desorption isotherms of bare WS<sub>2</sub> powder and WS<sub>2</sub>/GCNF-2 membrane. (b) The pore size distribution of WS<sub>2</sub>/GCNF-2 membrane.

The WS<sub>2</sub> sample shows reversible type II isotherms while the WS<sub>2</sub>/GCNF-2 sample exhibits type IV isotherms with a typical H2 hysteresis loop, indicating WS<sub>2</sub> powder as non-porous materials and WS<sub>2</sub>/GCNF-2 membrane as mesoporous materials.

**Fig. S8** Morphology of the WS<sub>2</sub>/CNF hybrid membrane prepared *via* the same solvothermal method, without graphene sheath wrapping the carbon nanofibers. FESEM images of (a) WS<sub>2</sub>/CNF-1, (b) WS<sub>2</sub>/CNF-2 and (c) WS<sub>2</sub>/CNF-3 hybrid membranes at low magnification. (d) FESEM image of WS<sub>2</sub>/CNF-2 hybrid membrane at high magnification.

**Fig. S9** FESEM images of the as-prepared WS<sub>2</sub> sample without adding CNF or GCNF membranes.

Fig. S10 High resolution C 1s spectra of (a)  $WS_2/GCNF-2$  hybrid membrane and (b) GO sheets, confirming that most of the oxygen-containing functional groups (-C-O and -C=O groups) of the graphene sheets in  $WS_2/GCNF-2$  hybrid membrane are removed after the thermal reduction process.

Fig. S11 Comparison of the electrochemical performance of WS<sub>2</sub>/GCNF-1, WS<sub>2</sub>/GCNF-2 and WS<sub>2</sub>/GCNF-3 anodes at constant current density of 0.1 A  $g^{-1}$ .

Fig. S12 Cycling performance of CNF,  $WS_2/CNF-1$ ,  $WS_2/CNF-2$  and  $WS_2/CNF-3$  anodes at constant current density of 0.1 A g<sup>-1</sup>.

Fig. S13 Columbic efficiency of the  $WS_2/GCNF-2$  hybrid membrane during the galvanostatic discharge-charge process.

**Fig. S14** The post-mortem FESEM images of WS<sub>2</sub>/GCNF-2 hybrid membrane after 100 cycles of discharge-charge tests.

Fig. S15 Nyquist plots of the  $WS_2$  and  $WS_2$ /GCNF-2 electrode after 10 cycles.



Fig. S1



Fig. S2



Fig. S3



Fig. S4



Fig. S5



Fig. S6



Fig. S7



Fig. S8



Fig. S9



**Fig. S10** 



Fig. S11



Fig. S12



**Fig. S13** 



**Fig. S14** 



Fig. S15