Electronic supplementary information:

Towards the ALD Thin Film Stabilized Single-Atom Pd₁ Catalysts

Mar Piernavieja-Hermida,^a Zheng Lu,^a Anderson White,^a Ke-Bin Low,^b Tianpin Wu,^c Jeffrey W. Elam,^d Zili Wu,^e and Yu Lei^{*,a}

- a. Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA.
- b. Research Resources Center, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
- c. X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
- d. Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
- e. Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

* Phone: +1-256-824-6527, yu.lei@uah.edu

This PDF file includes:

Figures S1 to S10

Tables S1 to S2

Figure S1. In situ QCM studies of Pd ALD using Pd(hfac)₂ and formalin as precursors at 200 °C. (a) 0-100 cycles, (b) first two cycles of Pd ALD on TiO₂, (c) first two cycles of Pd ALD on Al₂O₃.

Figure S2. In situ QCM studies of TiO₂ ALD using TiCl₄ and H₂O as precursors at 100 °C. Δm_1 and Δm_2 represent the mass gain during TiCl₄ and H₂O exposure, respectively. The total mass gain Δm of a complete TiO₂ ALD cycle is ca. 0.3 µg/cm². As the TiO₂ density of 4.5 g/cm³, the growth rate of TiO₂ is ca. 0.67 Å per ALD cycle.

Figure S3. BET surface area of (a) OTiPd, (b) 1TiPd, (c) 7TiPd, and (d) 14TiPd.

Figure S4. XRD of Spherical Al_2O_3 (black) compared with gamma- Al_2O_3 (red) and delta- Al_2O_3 (blue).

Figure S5. HAADF-STEM images of single atom catalysts: (a) and (b) 7TiPd₁, (c) and (d) 14TiPd₁.

Figure S6. Pd K edge XAFS fittings of the as-prepared catalysts in (a) k-space, and (b) Fourier transform.

Figure S7. Pd K edge XAFS fittings of Pd catalysts after hydrogen reduction at 250 °C in (a) k-space, and (b) Fourier transform.

Figure S8. Composition of Pd obtained from Pd K edge XANES and EXAFS spectra for the (a) asprepared Pd_1 catalysts, and (b) Pd_1 catalysts after hydrogen reduction

Figure S9. DRIFTS spectra of CO adsorption on 14TiPd. The spectra were obtained after room temperature flow of CO over time. After 0.5 minutes (cyan), 1 minute (green), 2 minutes (red), 4 minutes (blue), 6 minutes (magenta), 8 minutes (olive), 10 minutes (orange) and 30 minutes (gray).

Figure S10. Methanol decomposition light-off curves using the catalyst (a) OTiPd, (b) 1TiPd, (c) 7TiPd, and (d) 14TiPd. *Black*, Heating; *Red*, cooling.

Catalysts	^a Surface area	CO Chemisorption	
	(m²/g)	(µmol/ g catalyst)	
Bare Al_2O_3	33.8 ± 0.5	-	
OTiPd	31.7 ± 0.2	32.0	
1TiPd	32.9 ± 0.2	60.7	
7TiPd	31.4 ± 0.2	64.9	
14TiPd	31.9 ± 0.2	67.2	
Commercial Pd/Al ₂ O ₃	89.7 ± 0.3	790.1	

Table S1. BET surface areas of Pd catalysts for methanol decomposition.

^a BET measurement has ~ 1% systematic error

Table S2. Pd K edge XANES Linear Combination Fit.

	Pd-O	Pd-Cl	Pd-Pd
1TiPd1 in air	13.6%	86.4%	-
1TiPd1 reduced	-	36.9%	63.1%
7TiPd1 in air	8.8%	91.2%	-
7TiPd1 reduced		25.6%	74.4%
14TiPd1 in air	9.1%	90.9%	
14TiPd1 reduced	-	29.4%	70.6%

The XANES LCF generally has 10% systematic error.

Reference

1 Y. Lei, J. L. Lu, H. Y. Zhao, B. Liu, K. B. Low, T. P. Wu, J. A. Libera, J. P. Greeley, P. J. Chupas, J. T. Miller and J. W. Elam, *Journal of Physical Chemistry C*, 2013, **117**, 11141-11148.