Supporting Information

Colloidal Preparation and Electrocatalytic Hydrogen Production of MoS₂ and WS₂ Nanosheets with Controllable Lateral Sizes and Layer Numbers

Miao Zhou,^{†#} Zhuolei Zhang,^{†#} Keke Huang,[‡] Zhan Shi,[‡] Renguo Xie,^{†,*} and

Wensheng Yang[†]

† College of Chemistry, Jilin University, Changchun 130012, China

\$State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin

University, Changchun 130012, China

[#]The authors contributed equally.

E-mail: renguoxie@jlu.edu.cn

Figure S1. Photos of the reaction solution in the three-neck flask at different stages of reaction: (a) at roome temperature; (b) after heating to $320 \text{ }^{\circ}\text{C}$; (c) upon injection of sulfur solution at $300 \text{ }^{\circ}\text{C}$ in a reaction time of 30 s.

Figure S2. Low-magnification TEM images of single-layered MoS_2 nanosheets synthesized at 330 °C with Mo:S precursor ratios 1:3 with the lateral size of 40 nm, marking the standing edges of monolayers with blue orthogon, and highlighting the several top-view of the nanosheets with yellow circle. Insets: High-resolution TEM image of monolayer MoS_2 nanosheets; scale bars are 2 nm.

Figure S3: X-ray photoelectron spectroscopy of single layered MoS_2 nanosheets for the Mo3d core level peaks (a), and S2p core level peaks (b).

Figure S4. Low-magnification TEM images of 3 layered MoS_2 nanosheets in Figure 3a.

Figure S5. Low-magnification TEM images of 5 layered MoS_2 nanosheets in Figure 3b.

Figure S6. Low-magnification TEM images of 3 layered WS_2 nanosheets in Figure 7b.

Figure S7. (a) Low-magnification TEM image of 5 layered WS_2 nanosheets synthesized at 370 °C by hot injection. (b) HR-TEM image of 5 layered WS_2 nanosheets with the thickness of 3.6 nm.

Figure S8: X-ray photoelectron spectroscopy of single layered WS_2 nanosheets for the W4f core level peaks (a), and S2p core level peaks (b).

Figure S9. (a) Frequencies of E_{2g}^1 and A_{2g} Raman modes as a function of the number of layers in Figure 8a. (b) Absorption peak energies of WS_2 sheets as a function of the number of layers. The letters A, B and C refer to the peaks in Figure 8b.

Figure S10. X-ray diffraction patterns of the MoS₂ and WS₂ monolayer nanosheets annealing at 700 °C corresponded to black line and red line, respectively.

Figure S11. Raman spectra of (a) MoS₂ and (b) WS₂ monolayer nanosheets before (black line) and after (red line) annealing at 700 °C for 2h.

Figure S12. SEM image of monolayer (a) MoS_2 and (b) WS_2 nanosheets after annealing at 700 °C for 2h.

Figure S13. Polarization curves of (a) MoS_2 nanosheets and (b) WS_2 nanosheets in 0.5 M H₂SO₄ initially (black) and after annealing at various of temperatures: 500 °C (red), 600 °C (blue), 700 °C (dark cyan), and 800 °C (magenta).

Figure S14. Polarization curves of (a) MoS_2 nanosheets and (b) WS_2 nanosheets in 0.5 M H₂SO₄ initially (solid line) and after 500 CV sweeps between +0.22 and -0.23 V vs RHE (dash line).