Electronic Supplementary Information

MnO₂-induced synthesis of fluorescent polydopamine nanparticles for reduced glutathione sensing in human whole blood

Xiang-Juan Kong, Shuang Wu, Ting-Ting Chen*, Ru-Qin Yu and Xia Chu*

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

E-mail: xiachu@hnu.edu.cn;chenting1104@hnu.edu.cn

Fig. S1 Energy dispersive X-ray spectroscope (EDS) spectra of the synthesized MnO₂.

Fig. S2 Fluorescence excitation (black line, $\lambda ex=400$ nm) and emission (red line, $\lambda em=485$ nm) spectrum of the fluorescent PDA nanoparticles.

Fig. S3 Fluorescence emission spectra of PDA nanoparticles at different excitation wavelength.

Fig. S4 MALDI-TOF mass spectrometry of the synthesized fluorescent PDA nanoparticles. The sample was obtained in the mixture solution of 1.25 mM dopamine and 60 μ g/mL MnO₂ at room temperature 30 min and filtered with a 0.22 μ m syringe filter.

Fig. S5 EDS spectra of the synthesized PDA nanoparticles.

Fig. S6 Fluorescence stability of the synthesized PDA nanoparticles in water. Error bars are standard deviation of three repetitive experiments.

Fig. S7 UV-Vis absorption spectrum responses of the sensing system in the presense of dopamine (green line), MnO_2 (orange line), MnO_2 +dopamine (black line) and GSH+MnO₂+dopamine (red line) in water. Conditions: MnO_2 , 60 µg/mL; dopamine, 1.25 mM; GSH, 500 µM; reaction time: 30 min.

Fig. S8 Fluorescence intensity responses of the PDA nanoparticles at 485 nm with various concentrations HCl addition. Error bars are standard deviation of three repetitive experiments.

Fig. S9 Time-dependent fluorescence intensity curve after 6 mM HCl addition.

Fig. S10 Optimization of MnO_2 concentration for the fluorescent PDA nanoparticles synthesis. Inset: photographs of the synthesized fluorescent PDA nanoparticles at a series of different MnO_2 concentrations: 8 µg/mL (tube a), 15 µg/mL (tube b), 40 µg/mL (tube c), 60 µg/mL (tube d), 80 µg/mL (tube e), 120 µg/mL (tube f) and 150 µg/mL (tube g). Error bars are standard deviation of three repetitive experiments.

Fig. S11 Optimization of reaction time of dopamine and MnO_2 nanosheets for the fluorescent PDA nanoparticles synthesis. Error bars are standard deviation of three repetitive experiments.

Fig. S12 Time dependence of fluorescence intensity at 485 nm for the fluorescent PDA nanoparticles in the presence of GSH (500 μ M). Error bars are standard deviation of three repetitive experiments.

Method	Signal	Detection range	Limit of detection	Reference
Based on	Electrochemical response	25-300 μM	1.25 μM	S1
electropolymerized				
molecularly imprinted				
polymer				
Based on a coenzyme	Electrochemical response	Not given	11.4 µM	S2
pyrroloquinoline quinone				
modified electrode				
Based on CdTe quantum	Fluorescence	0.6-20 μM	0.1 µM	S3
dots-Hg (II) system				
Naphthalimide-based	Fluorescence	0.5-10 mM	28 µM	S4
colorimetric and				
fluorescent probe				
Electrophoresis	UV Absorption	2.5-30 μM	2.5 μM	S5
Based on upconversion	Fluorescence	Not given	0.9 µM	S 6
nanoparticles				
Based on polydopamine	Fluorescence	0-350 μM	1.5 μM	This work
nanoparticles				

 Table S1. Comparison of various reported methods for GSH detection.

Interferent	Concentration		
Na ⁺	1.6 mM		
K^+	2.0 mM		
Mg^{2+}	0.29 mM		
Ca ²⁺	14 mM		
Zn^{2+}	50 µM		
Fe ³⁺	2 µM		
Glucose (Glu)	6 mM		
Alanine (Ala)	50 µM		
Glutamine (Gln)	50 µM		
Histidine (His)	50 µM		
Glutamic acid (Gla)	50 µM		
Glycine (Gly)	200 µM		
Vitamine C (Vc)	50 µM		
Homocysteine (Hcy)	15 μM		
Cysteine (Cys)	250 μΜ		

 Table S2.
 Concentrations of the investigated interferents.

Sample	Measured	Added	Found	RSD	Recovery
	(µM)	(µM)	(µM)	(n=3)	(%)
1		25	41.4	4.3%	103.2
2	15.6	50	66.5	5.7%	101.8
3		100	112.8	3.2%	97.2

Table S3. Analytical results of GSH in human whole blood sample using thefluorescent PDA nanoparticles as a fluorescence signal indicator.

References

S1. L. Yang, W. Z. Wei, J. J. Xia, H. Tao and P. H. Yang, *Electroanalysis*, 2005, 17, 969–977.

S2. T. Inoue and J. R. Kirchhoff, Anal. Chem., 2000, 72, 5755-5760.

S3. B. Y. Han, J. P. Yuan and E. K. Wang, 2009, Anal. Chem., 81, 5569–5573.

S4. B. C. Zhu, X. L. Zhang, Y. M. Li, P. F. Wang, H. Y. Zhang and X. Q. Zhuang, *Chem. Commun.*, 2010, **46**, 5710-5712.

S5. P. Kubalczyk and E. Bald. *Electrophoresis*, 2009, **30**, 2280–2283.

S6. R. R. Deng, X. J. Xie, M. Vendrell, Y. T. Chang, G. X. Liu, J. Am. Chem. Soc., 2011, 133, 20168-20171.