Formation of $Fe_3O_4@SiO_2@C/Ni$ Hybrids with Enhanced Catalytic Activity and Histidine-rich Protein Separation

Yanwei Zhang^a, Min Zhang^{*,a}, Jinbo Yang^a, Lei Ding^a, Jing Zheng^a, Jingli Xu^{*,a}, and Shenglin Xiong^{*,b}

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.

^bKey Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China

Figure S1. Energy-disperse X-ray spectrum (EDS) of Fe $_3O_4@SiO_2@C/Ni-1$ composites

Figure S2. (A) FTIR spectra of Fe_3O_4 (a), $Fe_3O_4@SiO_2$ (b), $Fe_3O_4@SiO_2@PDA-Ni^{2+}-1$ (c) and $Fe_3O_4@SiO_2@C/Ni-1$ (d). (B) TGA test of $Fe_3O_4@SiO_2$ (a), $Fe_3O_4@SiO_2@PDA-Ni^{2+}-1$ (b), $Fe_3O_4@SiO_2@PDA-Ni^{2+}-2$ (c).

Figure S3. FESEM images of products obtained by annealing $Fe_3O_4@SiO_2@PDA-Ni^{2+}-1$ under N_2 atmosphere at 350 °C (A), 600 °C (C); FESEM images of core-shell structured $Fe_3O_4@SiO_2@C/Ni$ composites obtained by annealing $Fe_3O_4@SiO_2@PDA-Ni^{2+}-2$ under N_2 atmosphere at 350°C (B), 600°C (D). Scale bars: 500 nm (**A-D**).

Figure S4. XRD patterns of Fe_3O_4 (a), Fe_3O_4 @PDA/Ni²⁺ (b), Fe_xO_y @C/Ni(c) (($M_{dopamine:nickel}$ of 1:2, 37.6 mg nickel salt and 15 mg dopamine, carbonization at 500°C)

Figure S5. FESEM of Fe₃O₄@SiO₂@C/Ni with different thickness of SiO₂ by adjusting the different amount of TEOS from 50 μ L (a), 150 μ L (b), 300 μ L (c), 500 μ L (d) while keeping the other parameters fixed. Scale bars: 500 nm (**A**, **C**) and 250 nm (**B**, **D**).

Figure S6. Magnetic hysteresis curves of $Fe_3O_4@SiO_2@PDA-Ni^{2+}-1$ (A), $Fe_3O_4@SiO_2@C/Ni-1$ (B) measured at room temperature. (the inset is the digital picture showing that $Fe_3O_4@SiO_2@C/-1$ can be isolated from the solution by magnet.)

Figure S7. SEM and TEM images of α -Fe₂O₃ (a-d) and SiO₂@Fe₃O₄ (e-h).

Figure S8. XRD patterns of α -Fe₂O₃@PDA/Ni²⁺ (a), Fe₃O₄@C/Ni (b), α -Fe₂O₃@SiO₂@PDA/Ni²⁺ (c) and α -Fe₂O₃@SiO₂@C/Ni (d).

Figure S9. Recyclability of Fe_3O_4 @SiO₂@C-Ni-1 as Catalysts for the reduction of 4-nitrophenol.

Figure S10. Linear fitting of adsorption isotherms plots based on Freundlich model.

Langmuir			Freundlich		
Q _m	b	R ²	K _F	n	R ²
409.84	0.045	0.996	170.63	7.94	0.7884

Table S1 the estimate of Langmuir model and Freundlich model

Figure S11. Reusability of $Fe_3O_4@SiO_2@C/Ni-1$ through the adsorption-regeneration cycle.

Figure S12. (A) Curve a is UV-vis spectra of initial BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution(D). Curve b is UV-vis spectra of supernatant of BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution (D) after adsorbed by Fe₃O₄@SiO₂@C/Ni-1 Curve c is UV-vis spectra of desorption solution of Fe₃O₄@SiO₂@C/Ni-1 in BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution with 0.2 g mL⁻¹ imidazole solution as the eluent.

Figure S13. SDS-PAGE analysis of adsorption by $Fe_3O_4@SiO_2@C/Ni-1$ from solution. Lane 1, marker; lane 2, initial human blood diluted 60-fold as the control; lane 3, residual human blood solution after adsorption by $Fe_3O_4@SiO_2@C/Ni-1$; lane 4, the eluted human blood from $Fe_3O_4@SiO_2@C/Ni-1$ by 0.2 g ml⁻¹ imidazole solution.