
Supporting Information

Strong Dichroic Emission in Pseudo One Dimensional Material ZrS₃

Anupum Pant,^a Engin Torun,^b Bin Chen,^a, Soumya Bhat,^a, Xi Fan,^a Kedi Wu,^a David P Wright,^c Francois M. Peeters,^b Emmanuel Soignard,^c Hasan Sahin,^b and Sefaattin Tongay*^a

- ^a School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- ^b Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- ^c LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, United States

The thickness of the exfoliated ZrS₃ flakes were characterized by atomic force microscopy (AFM). Typical thin and thick flakes measure 7.4 nm and 48.6 nm, respectively.

Figure S1. Atomic force microscopy (AFM) measurements and height profile for thin (**a** and **b**) and thick (**c** and **d**) flakes.

^{*}corresponding author: Sefaattin.tongay@asu.edu