Solution-processed Highly Bright and Durable Cesium Lead Halide Perovskite Light-emitting Diodes

Zhanhua We,^{a,c,*} Ajay Perumal,^b Rui Su,^a Shendre Sushant,^b Jun Xing,^a Qing Zhang,^a Swee Tiam Tan,^b Hilmi Volkan Demir,^{b,*} and Qihua Xiong^{a,*}

^aDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371. Email: qihua@ntu.edu.sg

^bLuminous! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798. Email: hvdemir@ntu.edu.sg

°College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian, China 361021. Email: weizhanhua@hqu.edu.cn

† Z.H. Wei and A. Perumal contribute equally to this work.

Figure S1. (a) Photograph, (b) XRD pattern and (c) SEM image of the as-prepared CsPbBr₃ powder.

Figure S2. PLQY measurement of the as-deposited perovskite films. (a) Schematic diagram of the home-made apparatus for PLQY measurement. (b) Intensity spectra of the pristine excitation laser and lasers passing through CsPbBr₃ and CsPbBr₃+CsBr(0.4) thin films, where the absorbed photons number can be calculated by integrating area between curves. (c) Emission

spectra of the pristine excitation laser and CsPbBr₃ and CsPbBr₃+CsBr(0.4) thin films, where the emission photons number can be calculated by integrating area between curves. After calculation, it is determined that the PLQY of CsPbBr₃ and CsPbBr₃+CsBr(0.4) thin films are 0.5 % and 33.6 %, respectively.

Figure S3. XRD analysis of the as-prepared CsPbBr₃+CsBr(0.4) films, from which we can conclude that the film is pure monoclinic phase by carefully comparing XRD data with other related standard diffraction patterns.

Figure S4. XRD analysis of the as-prepared $CsPbBr_3+CsBr(0.4)$ films, from which we can conclude that there is not CsBr residues in the as-formed films by comparing the XRD data with all of the other standard diffraction patterns of CsBr.

Figure S5. Outstanding PL stability of one as-deposited $CsPbBr_3+CsBr(0.4)$ thin film, after 3 month of storage in ambient air (~ 50 % humidity), the PL spectra remains nearly the same.

Figure S6. Cross-sectional SEM image of the LED device, showing a layer by layer structure: ITO\PEDOT:PSS\perovskite\B3PYMPM\Cs₂CO₃+A1.

Figure S7. (a) and (b) Top-view SEM images of the as-deposited $CsPbBr_3$ and $CsPbBr_3+CsBr(0.4)$ films on PEDOT:PSS.

Figure S8. Luminance versus driving voltage (L-V) curves for perovskite films fabricated with different precursor solution.

Figure S9. Luminance-current density-voltage (*L-J-V*) curve of a MAPbBr₃ LED device.

Figure S10. Ambient stability of a CsPbBr₃+CsBr(0.4) LED device under a constant driving current of 10 mA (J = 333.33 mA cm⁻²), where we can see the device cannot stand at such high current density. Specifically, the device performance drops dramatically to ~ 80 % of L_0 at the very first few seconds and decreases slightly to ~ 60 % with some fluctuation in 100 min.