Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Counterbalancing of Morphology and Conductivity for Poly(3,4ethylenedioxythiophene) Polystyrene Sulfonate based Flexible Devices

Woongsik Jang ^a, Sunyong Ahn ^a, Soyun Park ^a, Jong Hyeok Park ^{b,*} and Dong Hwan Wang ^{a,*}

^aSchool of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 156-756, Republic of Korea
^bDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50
Yonsei-ro, Seodaemun-gu, Seoul 120–749, Republic of Korea

* Corresponding author, E-mail address: lutts@yonsei.ac.kr (Prof. J. H. Park), and king0401@cau.ac.kr (Prof. D. H. Wang)

Keywords: PEDOT:PSS anode, additive, morphology, conductivity, Raman spectroscopy, flexible device

Table S1 The sheet resistance of PEDOT:PSS electrode with DMSO 5vol.% anddifferent concentration of Zonyl with 0, 0.1, 0.2 and 1 wt.%, respectively.

PEDOT:PSS with DMSO 5 vol.%	Zonyl	Zonyl	Zonyl	Zonyl
	0 wt.%	0.1 wt.%	0.2 wt.%	1 wt.%
Sheet resistance ^a [$\Omega \cdot cm^{-2}$]	209.8	88.5	51.5	153.1

^a Average values from 10 samples per condition

Fig. S1 Schematics of the PEDOT:PSS electrode (a) without additives, and (b) with 5 vol.% DMSO and 0.1 wt.% Zonyl.

Fig. S2 (a) Ultraviolet photoelectron spectroscopy of PEDOT:PSS electrode as a function of the concentration of Zonyl (0, 0.1 and 0.2 wt.%). The 5 vol.% DMSO was added to all the PEDOT:PSS solutions. (b) Scheme of energy level of PEDOT:PSS without Zonyl and with Zonyl of 1wt.% and 2wt.%, respectively.

Fig. S3 The photocurrent density (J_{ph}) versus voltage for the devices based on PTB7:PC₇₁BM BHJ with PEDOT:PSS electrode without and with Zonyl (0.1 wt.%).

Fig. S4 (a) Transparency of PEDOT:PSS films with increasing numbers of anode layers, and an ITO electrode. (b) The sheet resistance of PEDOT:PSS films versus number of anode layers. All the PEDOT:PSS solutions included 5 vol.% DMSO and 0.1 wt.% Zonyl.

Fig. S5 Non-contact mode AFM 3D surface images of PEDOT:PSS films with (a) 2 layers and (b) 3 layers (inset values show the RMS). All the samples were fabricated by 5 vol.% DMSO and 0.1 wt.% Zonyl.

Fig. S6 The J-V characteristics of the device fabricated with a rigid conventional ITO anode based on PTB7:PC₇₁BM BHJ; the inset shows the photovoltaic parameters.