Support Information

Highly fluorescent Zn-doped carbon dots as Fenton reaction-based

bio-sensor: An integrative experimental-theoretical consideration

Quan Xu,^{a*} Yao Liu,^a Rigu Su,^a Lulu Cai,^{b*} Bofan Li,^a Yingyuan Zhang,^a Yajun Wang,^a Yan Wang,^b Neng Li,^{c*}Xiao Gong,^c Zhipeng Gu,^d Yusheng Chen,^e Yanglan Tan,^f Chenbo Dong,^g Theruvakkattil Sreenivasan Sreeprasad^g

Figure S1. The quantum yield results by (a) ratio of zinc chloride to sodium citrate; (b) temperature of the hydrothermal reaction (from 140 to 210° C);(c) time of hydrothermal reaction.

The quantum yield of PLQY was determined in a standard method.[1] And the absolute PLQY value of CDs was calculated by the following formula:

$$\phi_{X} = \phi_{ST} \left(\frac{Grad_{X}}{Grad_{ST}} \right) \left(\frac{\eta_{X}^{2}}{\eta_{ST}^{2}} \right)$$

Where the subscripts ST and X denote standard and test, respectively. Φ is the fluorescence quantum yield. Grad is the gradient from the plot of integrated fluorescence intensity vs absorbance. And η is the refractive index of the solvent.

Figure S4. Photoluminescence spectrum of the Zn-CDs

Figure S5. UV absorption spectrum of Zn-CDs

Figure S6. QY according to different Zn %

Figure S7 High resolution TEM picture of Zn-CDs

Figure S8 TEM-EDX analysis of Zn-CDs

Figure S9 EDX mapping analysis of Zn-CDs

ratio	Zn wt%
1:0.25	6.5%
1 : 0.5	7.9%
1:0.75	11.6%
1:1	13.2%

Table S1 Zn wt% content tested by ICP

It is found that the PL quantum yield reach the maximum when the molar ratio for sodium citrate and zinc chloride is 1:0.5. Compared with other reported CDs doped with heteroatom,[1-3] by testing the Zn content with ICP (Table S1), the as-prepared Zn-doped carbon dots has a high doping ratio (from 6% to 9%)

Supplementary references

- [1]. D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang and J. J. Zhu, Carbon, 2013, 64, 424-434.
- [2]. J. Cheng, C. Wang, Y. Zhang, S. Yang and S Chen, RSC Adv., 2016, 6,

37189-37194

- [3]. Y. Guo, L. Zhang, X. Liu, B. Li, D. Tang, W. Liu and W. Qin, *J. Mater. Chem. A*, 2016, 4, 4044-4055
- [4] J. Hou, T. Zhou, L. Wang, P. Zhang, L.D. Sensor. Actuat. B: Chem, 2016, 230, 615-622