Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information 1 2 Ultrafast fabrication of highly active BiVO₄ photoanodes by 3 hybrid microwave annealing for unbiased solar water splitting 4 5 Jin Hyun Kim^a, Yim Hyun Jo^b, Ju Hun Kim^c, Jae Sung Lee^{c*} ^aSchool of Environmental Science & Engineering, Pohang University of Science and 6 7 Technology (POSTECH), Pohang, 790-784 South Korea 8 ^bAdvanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan, 689-798 9 South Korea ^cSchool of Energy and Chemical Engineering, National Institute of Science and Technology 10 11 (UNIST), Ulsan, 689-798, South Korea ^dDepartment of Chemical System Engineering, The University of Tokyo,7-3-1 12 13 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan CORRESPONDING AUTHOR FOOTNOTE 14 15 * Corresponding author 16 Tel: +82-54-279-1552, Fax: +82-54-279-1599. E-mail: jlee1234@unist.ac.kr (J. S. Lee), 17 18 19

1 Supplementary Calculation

2 Surface/bulk charge separation efficiencies (η_{surf})

3

4 For quantitative assessment of charge separation efficiency, photocurrent comparison between water 5 oxidation/hole scavenger (SO_3^{2-}) was used.

6 Water oxidation: $2H_2O + 4h^+ \rightarrow 4H^+ + O_2$, E^o=1.23 V_{RHE}

7 Sulfite oxidation: $SO_3^{2-} + h^+ \rightarrow SO_3^{-}$, E°=0.73 V_{RHE}

8 Light absorption by a photocatalyst generates absorbed photocurrent (J_{abs}) that undergoes two major losses of

9 bulk and surface recombination. Hence the measured photocurrent during water oxidation (J^{H2O}) is expressed by; 10

 $11 \qquad J^{\rm H2O} = J_{abs} \times \eta_{bulk} \times \eta_{surf}$

12 where η denotes the charge separation yield in the bulk of semiconductor (η_{bulk}) or on the surface (η_{surf}). Since 13 the surface charge separation yield of SO₃²⁻ is almost 100% (η_{surf} = 1), as discussed above, the photocurrent from 14 its oxidation can be expressed as follows:

15 $J^{SO3} = J_{abs} \times \eta_{bulk}$

16 The J_{abs} value of BiVO₄/WO₃ was estimated to be ~5 mA/cm² from calculation from AM 1.5G radiation region

17 and UV-vis absorbance spectrum shown below. η_{bulk} , η_{surf} can be derived in photocurrent comparison form.

- 18 $\eta_{bulk} = J^{SO3} / J_{abs}$
- 19 $\eta_{surf} = J^{H2O} / J^{SO3}$
- 20 For calculation, correlation between absorbance and radiation proposed by Choi's group ¹ was used as below.
- 21 $P_d = P_0 10^{-A}$

22 $P_{abs} = P_0(1-10^{-A})$

23 P_0 (unit : mWcm⁻²nm⁻¹) is provided power by solar simulator (in this case, AM 1.5G), P_{abs} is power of light 24 actually absorbed by photoanode and P_d is power of light not absorbed to photoanode but dissipated (reflection 25 actually absorbed by hotoanode and P_d is power of light not absorbed to photoanode but dissipated (reflection

25 and penetration). A is absorbance of photoanode and LHE (light harvesting efficiency) is defined as 1-10^{-A}. So

26 light which is not absorbed at photoanode will be 10^{-A} . Integrated $P_{abs}(\lambda)$ (mWcm⁻²nm⁻¹) along with wavelength

27 λ gives total power (unit of mWcm⁻²) which is power of light absorbed by photoanode (maximum power of

28 photoanode). Below formula shows such relationship photon absorption (J_{abs}) .

$$J_{abs}(\frac{mA}{cm^2}) = \int_{\lambda_1}^{M_2} \frac{\lambda}{1240} P_{abs}(\lambda) d\lambda \quad (\frac{mW}{cm^2})$$

29 30

31

32

33

34

35

36

37

38

2 Supplementary Table

3

4 Table S1 Surface elemental composition analyzed by XPS spectra.

	Photoanode/annealing system (time)		C (%)	O (%)	Bi (%)	V (%)	Mo (%)	W (%)
	BiVO	FA (300 min)	42.1	37.8	13.6	6.5		
	BIVO ₄	HMA (6 min)	45.8	33.6	15.1	5.5		
	1% Mo:BiVO ₄	FA (300 min)	34.0	46.4	12.9	6.3	0.4	
		HMA (6 min)	45.9	35.0	13.9	4.9	0.3	
	BiVO ₄ /WO ₃	FA(300 min)	43.0	35.0	11.9	5.8		0.3
		HMA (6 min)	42.1	37.0	13.4	5.6		1.9
5								
6								
0								
7								
8								
_								
9								
10								
10								
11								
12								
13								
14								
15								
17								
16								
17								
18								
10								
19								
20								
20								
21								
22								

- 2 Supplementary Figures
- 3

4

- 5 Figure S1. (a) XRD spectra of BiVO₄/WO₃ fabricated by FA with different lengths of annealing time.
- 6 (b) Comparison of $BiVO_4/WO_3$ films made by FA (300 min) and HMA (6 min).

1

igure S2. (a) Photographs of BiVO₄ films prepared with two annealing methods (FA and HMA). Optical properties (LHE=1-10^{-absorbance}, transmittance) of BiVO₄ (b), 1% Mo:BiVO₄ (c) and BiVO₄/WO₃ (d). Light harvesting efficiency (LHE) of samples corresponded to $J_{abs} = ~3.6 \text{ mA/cm}^2$ (BiVO₄, 1% Mo:BiVO₄) and ~4.5 mA/cm² (BiVO₄/WO₃).

- 2 Figure S3. (a) Photographs of BiVO₄ films prepared by HMA with different susceptors (graphite, no
- 3 susceptor and n-type Si wafer). (b) XRD patterns of the films. The letter 'T' stands for pattern of FTO
- 4 (SnO₂). Reference pattern for scheelite monoclinic BiVO₄, ICSD 01-075-1866 is also shown.

Figure S4. Scanning electron micrographs of (a, b) BiVO₄, (c, d) 1% Mo: BiVO₄ and (e, f)
BiVO₄/WO₃ with different annealing methods. (a,c,e) FA, (b,d,f) HMA. Annealing times are
set for 300 min (FA) and 6 min (HMA). Scale bar: 5.0 µm.

3 **Figure S5.** Particle size count from SEM image (count area: 500 nm X 1000 nm) for (a) 4 BiVO₄, (b) 1% Mo:BiVO₄ and (c) BiVO₄/WO₃ annealed with FA and HMA. Overall count 5 number of HMA samples (~35) is lower than furnace (~45) owing to larger portion of pores 6 on HMA samples on same count area size. Average feature size was decided via using top 7 count size (60~90 nm for furnace samples, 30~60 nm for HMA samples) with deviation of 8 2^{nd} , 3^{rd} highest count. Calculated result was marked at Table 1.

9

10

- Figure S6. Cross section SEM image of (a, b) BiVO₄, (c, d) 1% Mo:BiVO₄ and (e, f) BiVO₄/WO₃
 film with different annealing system (furnace and HMA).

Figure S7. X-ray photoelectron spectra (XPS) of (a) C 1s (284.5 eV for C-C, 288.0 eV for carbonate
or hydrocarbon), (b) O 1s (529.8 eV for metal oxide, 531.3 eV for –OH), (c) Bi 4f (159.1 eV for Bi³⁺
as metal oxide), (d) V 2p (515.9 eV for V⁵⁺ as metal oxide), (e) Mo 3d and (f) W 4f (35.5 eV for W⁶⁺
for WO₃). Samples used for analysis are BiVO₄, 1% Mo:BiVO₄ and BiVO₄/WO₃ made with FA (300
min) and HMA (6 min). Information of binding energy was referred from ²⁻⁵

5 Figure S8. Nyquist plots in 0.5 M KPi buffer under illumination of 1 sun (100 mW/cm²) with
6 applied bias of 0.63 V vs. Ag/AgCl.

Figure S9. IV curves of (a) MAPbI₃ perovskite solar cell and (b) 2p (parallel alignment) c-Si solar
 cell with/without BiVO₄/WO₃ (HMA, 6min) filter.

Figure S10. IV curves of NiOOH/FeOOH/BiVO₄/WO₃ (HMA, 6min) photoanode – 2p c-Si
tandem cell measured in (a) two and (b) three electrode configurations. Measurements were
conducted under AM 1.5G (100 mW/cm²) illumination in 0.5 M KPi (pH 7.0), the scan rate
of 20 mV/cm² (backward) and front side illumination. Active area was 0.42 cm². Electrolyte
was purged with Ar gas.

1

9

10

11 SUPPLEMENTAY REFERENCES

12	1.	H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi and H. Park, J. Phys. Chem. C, 2013, 117, 9104-
13		9112.
1/	2	I H Kim V Io I H Kim I W Jang H I Kang V H Lee D S Kim V Jun and I S Lee

```
15 ACS Nano, 2015.
```

```
16 3. G. Wang, Y. Ling and Y. Li, Nanoscale, 2012, 4, 6682-6691.
```

```
    J. H. Kim, G. Magesh, H. J. Kang, M. Banu, J. H. Kim, J. Lee and J. S. Lee, Nano Energy,
    2015, 15, 153-163.
```

- K. P. S. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang and J. S. Lee, *ChemSusChem.*, **2012**, 5, 1926-1934.
- 21