Electronic Supplementary Information (ESI)

High-Energy Lithium-Ion Hybrid Supercapacitors Composed of Hierarchical Urchin-like WO₃/C Anodes and MOF-derived Polyhedral Hollow Carbon Cathodes

Juan Xu,¹ Yuanyuan Li,¹ Lei wang,¹ Qifa Cai,¹ Qingwei Li,^{1,3} Biao Gao,² Xuming Zhang,

 $^{\rm 2,3}$ Kaifu Huo1,* and Paul K Chu3

¹ Wuhan National Laboratory for Optoelectronics (WNLO) School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074, China. E-mail: <u>kfhuo@hust.edu.cn</u>

²The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.

³ Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

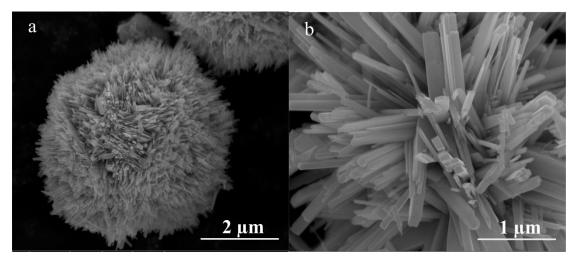


Figure S1. Characterization of pristine WO_3 : (a) The SEM of WO_3 , (b) The high-magnification SEM of WO_3 nanorod.

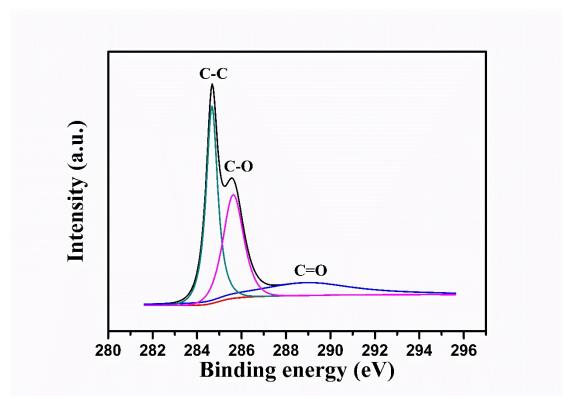


Figure S2. High-resolution XPS spectra of Urchin-like Carbon Coated WO_3 Microspheres of C1s.

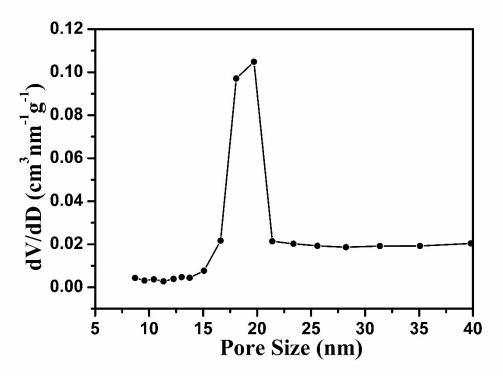


Figure S3. Pore size distribution plot of urchin-like WO₃/C microspheres.

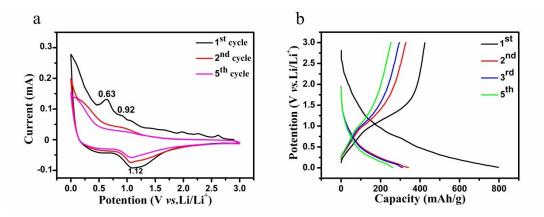
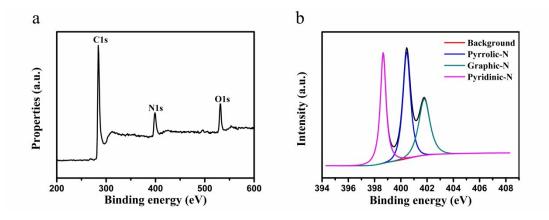



Figure S4. The CV curves and first five discharging-charging cycles of pristine $WO_3//Li$

half-cells in the voltage range of 0-3.0 V vs. Li / Li^+.

Figure S5. (a) High-resolution XPS spectra of MOF-NC. (b) The high-resolution N 1s spectrum can be deconvoluted into pyridinic N (398.6 eV), pyrrolic N (400.4 eV), and graphitic N (401.8 eV).