Optimizing CuO p-type dye-sensitized solar cells by using a comprehensive electrochemical impedance spectroscopic study

Oliver Langmar, Carolina R. Ganivet, Gema de la Torre, Tomás Torres, Rubén D. Costa* and Dirk M. Guldi*

Oliver Langmar, Dr. Rubén D. Costa and Prof. Dirk M. Guldi

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials,

University of Erlangen-Nürnberg, Egerlandstr. 3,91058 Erlangen Germany

E-mail: ruben.costa@fau.de, dirk.guldi@fau.de

Carolina R. Ganivet, Dr. Gema de la Torre and Prof. Tomás Torres Universidad Autónoma de Madrid, and Institute for Advanced Research In Chemical Sciences

(IAdChem), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain

E-mail: tomas.torres@uam.es

Prof. Tomás Torres Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia c/ Faraday, 9, Cantoblanco, 28049 Madrid, Spain

Keywords: Electrochemical impedance spectroscopy, p-type DSSC, CuO electrodes, Electron accepting zinc phthalocyanines, Optimization

Figure S1: Upper part - Nyquist plot (circles) of CuO-DSSCs with the respective Kronig-Kramers test (solid line) under 1 sun illumination (black) and dark (red) recorded at V_{oc} conditions.

Table S1:	Respective	chi-square	values of t	he Kronig	-Kramers	test for the	e imaginary	(-Z'') and
real part (Z	') as well as	the sum (Z) for the m	easured Ny	quist plots	s under lig	ht and dark o	conditions.

Measurement condition	χ ² [Ζ]	χ² [Ζ']	χ² [-Ζ'']
light	2.11 x10 ⁻⁶	8.00 x 10 ⁻⁷	1.3 x 10 ⁻⁶
dark	9.94 x 10 ⁻⁶	3.17 x 10 ⁻⁶	6.77 x 10 ⁻⁶

Figure S2: Upper part - Nyquist plot (circles) of CuO-DSSCs with the respective fitting (solid line) under 1 sun illumination (green) and dark (red) recorded at V_{oc} conditions. The resistances and the effective rate constant k_{eff} , which can be extracted from the Nyquist plots, are shown. Bottom part – Electrical circuit model used for EIS data fitting.

Table S2: Fitting results of the exemplary Nyquist plots of Fig S2 with the corresponding percental errors. $Y_{0,Pt}$, α_{Pt} , $Y_{0,\mu}$ and α_{μ} are used to calculate the capacitances C_{Pt} and C_{μ} of the constant-phase element – **Equation 2**.

Measurement condition	R _s [Ω]	$R_{Pt}[\Omega]$	Y _{0,Pt} [Ss ^α]	α_{Pt}	R _{CT/rec} [Ω]	Y _{0,μ} [Ss ^α]	$lpha_\mu$
light	26.16	4.51	3.91 x 10 ⁻⁵	0.81	39.99	1.86 x 10 ⁻⁴	0.95
	(0.74%)	(6.59%)	(45.88%)	(6.05%)	(0.72%)	(3.10%)	(0.67%)
dark	27.56	6.37	1.19 x 10 ⁻⁵	0.92	69.77	2.15 x 10 ⁻⁴	0.94
	(0.56%)	(3.66%)	(29.82%)	(3.44%)	(0.50%)	(2.22%)	(0.50%)

Figure S3: Left part: Current density vs. applied voltage under 1 sun and AM 1.5 illumination (line) and dark (dashed) conditions for a p-type CuO DSSC. Inset – IPCE spectra of the corresponding device. Right part: Absorption spectra and molecular structure of the electron-accepting phthalocyanine **ZnPc2**, which was used as a photosensitizer.

Figure S4: Top left – Time constants under light conditions derived via **Equation 3** (black), determined via **Equation 4** / the Nyquist plot maximum frequency (red), and via **Equation 4** / the frequency of the maximum in the bode phase plot (blue). Top right - τ_{light} (black) and τ_{dark} (red) determined by **Equation 3** for the whole voltage region. Bottom left - η_{cc} vs. applied voltage. Bottom right – L_{eff} (black) and D_{eff} (red) vs. applied voltage for a p-type CuO DSSCs.

Figure S5: XRD spectra of CuO electrodes calcinated at 300, 350, 400, and 500°C in black, red, green, and blue, respectively, with the bare FTO substrate in orange and the corresponding crystal planes in brackets. Some of the spectra are offset in intensity for a better comparability.

Figure S6: Normalised Raman spectra of CuO electrodes calcinated at 300 (black), 350 (red), 400 (green) and 500°C (blue) showing the three active raman modes A_g , B_{1g} and B_{2g} .

Figure S7: Variation of the Fermi level E_F (black) and the bandgap energy (red) for CuO electrodes calcinated at different temperatures.

Figure S8: SEM images (150k magnification) of CuO electrodes calcinated at 300, 350, 400, and 500°C.

Table S3: Figures-of-merit of p-type CuO DSSCs for optimization of T_{sint} , the electrode thickness

and the electrolyte ratio.

Devices			Figures-of-merit						
Sintering [°C]	Thickness [µm]	I ⁻ /I ₂ ratio	Dye loading ^[a] [mol/cm ²]	V _{oc} [mV]	J _{sc} [mA/cm ²]	FF	η [%]	IPCE ^[b] [%]	
Calcinatio	n temperatu	re							
300	5.0	5:1	4.3	92.6	2.76	0.36	0.092	24.3	
350	4.7	5:1	3.8	92.6	2.53	0.37	0.086	22.3	
400	4.9	5:1	3.0	92.6	1.79	0.38	0.062	15.6	
500	4.8	5:1	1.3	97.5	1.26	0.39	0.048	10.6	
Electrode	thickness								
300	1.5	5:1	0.9	112.2	2.01	0.38	0.087	17.7	
300	5.0	5:1	4.3	92.6	2.76	0.36	0.092	24.3	
300	9.0	5:1	13.8	82.9	3.08	0.34	0.087	25.5	
Electrolyte ratio I ⁻ /I ₂ ⁻									
300	5.1	10:1	4.3	95.1	1.92	0.36	0.066	17.1	
300	5.1	7.5:1	4.3	99.9	2.27	0.35	0.079	19.9	
300	5.0	5:1	4.3	92.6	2.76	0.36	0.092	24.3	
300	5.1	2.5:1	4.3	87.7	3.57	0.36	0.112	29.6	

[a] All values multiplied by 10⁻⁹, [b] IPCE at 670 nm

Figure S9: From top left to bottom right C_{μ} light, C_{μ} dark, τ_{light} , τ_{dark} , η_{cc} , D_{eff} and L_{eff} all vs. applied voltage for the different calcination temperatures 300 (black), 350 (red), 400 (green) and

500°C (blue). The fits of C_{μ} dark according to **Equation 9** are depicted as solid lines in the corresponding color.

Figure S10: From top left to bottom right C_{μ} light, C_{μ} dark, τ_{light} , τ_{dark} , η_{cc} , D_{eff} and L_{eff}/d all vs. applied voltage for the different film thicknesses 1.5 µm (black), 5.0 µm (red) and 9.0 µm (green). The fits of C_{μ} dark according to Equation 9 are depicted as solid lines in the corresponding color.

Figure S11: From top left to bottom right C_{μ} light, C_{μ} dark, τ_{light} , τ_{dark} , η_{cc} , D_{eff} and L_{eff} all vs. applied voltage for the electrolyte ratios 2.5:1 (black), 5:1 (red), 7.5:1 (green) and 10:1 (blue). The fits of C_{μ} dark according to **Equation 9** are depicted as solid lines in the corresponding color.

Calculation of the redox potential:

In solution iodine will undergo an equilibrium reaction with iodide to form triiodide with the reaction constant k_1 - Equation S1. Considering that k_1 is very large in acetonitrile $(\log (k_1/M^{-1}) = 6.76 \times 10^5)$, basically all free iodine will react to triiodide.¹ From this we can approximate that the final triiodide concentration $[I_3^-]$ is almost equal to the initial concentration of iodine $[I_2]$. Furthermore, for every mol I_3^- that has been formed, an equimolar amount of iodine $[I^-]$ has been consumed – e.g., for an electrolyte with the initial concentrations of $[I^-] = 1.0M$ and $[I_2] = 0.1M$, the final concentrations of the active redox species will be $[I^-] = 0.9M$ and $[I_3^-] = 0.1M$. With Equation S1 and the aforementioned approximations at hand, we calculated the redox

potentials for the all the investigated electrolyte ratios. Equation S2 shows the redox reaction of the I^{-}/I_{3}^{-} redox couple from which we can establish the corresponding Nernst-equation – Equation S3. From this we can calculate the redox potential (E_{redox}) of the investigated electrolytes using E^{0} (I_{3}^{-}/I^{-}) = 0.354 V vs. NHE – Table S4 :¹

$$I_2 + I^- \xrightarrow{k_1} I_3^-$$
 (S1)

$$I_3^- + 2e^- - 3I^-$$
 (S2)

$$E_{redox} = E^0 + \frac{RT}{2F} \times \ln \frac{\left[I_3^-\right]}{\left[I^-\right]^3}$$
(S3)

Table S4: Calculated redox potentials $E_{redox}(I_3^-/I^-)$ for the investigated electrolyte ratios

Ratio I ⁻ :I ₂	[I ₃ ⁻] in M ^[a]	[I ⁻] in M ^[a]	E _{redox} (I ₃ -/I ⁻) in V vs. NHE ^[b]
10:1	0.1	0.9	0.331
7.5:1	0.13	0.87	0.335
5:1	0.2	0.8	0.343
2.5:1	0.4	0.6	0.361

[a] Concentration of the redox species after reaching the equilibrium - Equation S2, [b] calculated according to Equation S3

REFERENCES

1 G. Boschloo and A. Hagfeldt, Acc. Chem. Res., 2009, 42, 1819–1826.