Electronic Supplementary Information (ESI)

Lamellar MoSe₂ Nanosheets Embedded with MoO₂ Nanoparticles: Novel Hybrid Nanostructures Promoted Excellent Performances for Lithium Ion Batteries

Xu Zhao, ^{a, b} Jiehe Sui, ^{a*} Fei Li, ^a Haitao Fang, ^a Hongen Wang, ^b Jiangyu Li, ^c Wei Cai, ^a Guozhong Cao ^{b*} ^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China ^b Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA ^c Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA *To whom correspondence should be addressed: <u>suijiehe@hit.edu.cn;</u>

gzcao@u.washington.edu

Discussion on weight ratios in three MoO₂@MoSe₂ heterostructures

Assuming that all MoSe₂ in first hydrothermal reaction was used to be loaded in the second step (1 mmol MoSe₂, about 0.254 g). From XRD patterns listed in Figure 1 and Figure S1, we cannot distinguish MoO₃ peaks, which indicate that raw materials are reduced to MoO₂ thoroughly. Considering ethylene glycol (EG) is can be a reduction reagent in many reported papers, thus he redox reaction from MoO₃ to MoO₂ in EG could possibly be ascribe to:

$$\text{HO-CH}_2\text{-}\text{CH}_2\text{-}\text{OH} + \text{MoO}_3 \xrightarrow{200 \text{ °C } 24 \text{ } h} \text{O}=\text{CH}_2\text{-}\text{CH}_2\text{=}\text{O} + \text{MoO}_2 + \text{H}_2\text{O}$$

Take 0.1 g MoO₃ as an example, the theoretical yield of MoO₂ is about 0.089 g. So the weight ratio of MoO₂

to $MoSe_2$ is 0.35:1. Similarly, when we use 0.05 g MoO_3 and 0.2 g MoO_3 , the weight ratios of MoO_2 to $MoSe_2$ are 0.175:1and 0.7:1, respectively.

Figure S1. XRD patterns of MoO₂@MoSe₂ heterostructures with different mass ratios.

Figure S2. Low magnification TEM results of (a) bare MoSe₂ and (b) 2-MoO₂@MoSe₂ heterostructure; SEM results of (c) Bare MoSe₂ experienced a second solvothermal process without loading MoO₂; (d) bare MoO₂, (e) 1-MoO₂@MoSe₂ and (f)

3-MoO₂@MoSe₂.

Samples	100	200	500	800	1000	1500	2000	100	Retention Rate##
	mA g ⁻¹	(70)							
MoO ₂ @MoSe ₂	1136	1072	970	863	776	610	485	1040	92
MoO ₂	685	640	515	215	121	45	9.7	429	63
MoSe ₂	705	746	530	307	131	87.8	4.9	510	72

Table S1. Comparison of rate performance of samples MoO₂@MoSe₂, MoO₂ and MoSe₂

Taken from the 5th cycle at each current density; ## Taken from the 45th cycle in the end.

Figure S3. Rate performances of (a) MoO₂@MoSe₂ heterostructures with different mass ratios and mix-MoO₂@MoSe₂; CV results (0.2 mV s⁻¹) of (b) 1-MoO₂@MoSe₂; (c) 2- MoO₂@MoSe₂; (d) mix- MoO₂@MoSe₂.

		Rate performance (mAh g ⁻¹) #							
Samples*	100	200	500 mA	800 mA	1000	1500	2000	100	- Retention Rate
	mA g ⁻¹	mA g ⁻¹	g-1	g ⁻¹	mA g ⁻¹	mA g ⁻¹	mA g ⁻¹	mA g ⁻¹	(%) ##
a	916	810	599	524	373	247	168	541	59
b	1136	1072	970	863	776	610	485	1040	92
с	986	770	678	544	353	297	158	666	67
d	692	506	408	319	290	211	168	336	49

Table S2. Rate performances of samples with different mass loading.

* (a) 1-MoO₂@MoSe₂; (b) 2-MoO₂@MoSe₂; (c) 3-MoO₂@MoSe₂, (d) mix-MoO₂@MoSe₂, respectively. # Taken from the

5th cycle at each current density; ## Taken from the ratio of 5th and 45th at the end.

Figure S4. Cycle performance of MoO₂@MoSe₂ heterostructures under 1000 and 1500 mA g⁻¹ current density.

Figure S5. Pore size distribution of (a) bare MoO₂ and (b) bare MoSe₂