Electronic Supplementary Information

ZnO-Au-SnO₂ Z-scheme Photoanodes for Remarkable

Photoelectrochemical Water Splitting

Jing-Mei Li,[‡] Hao-Yun Cheng,[‡] Yi-Hsuan Chiu and Yung-Jung Hsu*
Department of Materials Science and Engineering, National Chiao Tung University,
Hsinchu 30010, Taiwan

Table S1. Fitting results for emission decay profiles of EY in the presence of different samples.

entry	A1 (%)	τ_{l} (ns)	A ₂ (%)	$\tau_2(\mathrm{ns})$	<τ> (ns)	χ^2	k _{ct} (s ⁻¹)
EY	19.40	16.42	80.60	2.26	11.27	1.006	-
EY/ZnO	16.64	15.01	83.36	1.83	10.01	1.040	$0.11 \times 10^8 (\text{EY} \Rightarrow \text{ZnO})^a$
EY/SnO2	17.87	15.61	82.13	2.02	10.54	1.021	$0.06 \times 10^8 (\mathrm{EY} o \mathrm{SnO}_2)^a$
EY/Au	19.26	16.29	80.74	2.21	11.19	1.014	$0.01 \times 10^8 (\text{EY} \rightarrow \text{Au})^a$
EY/ZnO-Au	10.61	14.66	89.39	1.66	8.31	1.000	$0.20 \times 10^8 (ZnO \Rightarrow Au)^b$
EY/ZnO-Au-SnO2-1	1.82	14.44	98.18	1.35	3.52	1.010	$1.78 \times 10^8 (ZnO \rightarrow Au \rightarrow SnO_2)^c$
EY/ZnO-Au-SnO2-2	0.71	14.42	99.29	1.31	2.26	1.006	$3.36 \times 10^8 (ZnO \Rightarrow Au \Rightarrow SnO_2)^c$
EY/ZnO-Au-SnO2-3	2.93	14.49	97.07	1.44	4.48	1.013	$1.17 \times 10^8 (\text{ZnO} \rightarrow \text{Au} \rightarrow \text{SnO}_2)^c$

^aThe value was calculated by the expression

$$k_{\rm ct}({\rm EY} \to {\rm A}) = \frac{1}{\langle \tau \rangle}({\rm EY}/{\rm A}) - \frac{1}{\langle \tau \rangle}({\rm EY})$$
, where A = ZnO, SnO₂ or Au.

$$k_{\rm ct}({\rm ZnO} \rightarrow {\rm Au}) = \frac{1}{\langle \tau \rangle} ({\rm EY/ZnO} - {\rm Au}) - \frac{1}{\langle \tau \rangle} ({\rm EY/ZnO}) - k_{\rm ct}({\rm EY} \rightarrow {\rm Au}).$$

$$k_{\rm ct}({\rm ZnO} \rightarrow {\rm Au} \rightarrow {\rm SnO_2})$$

$$= \frac{1}{\langle \tau \rangle} (EY/ZnO - Au - SnO_2) - \frac{1}{\langle \tau \rangle} (EY) - k_{ct} (EY \to ZnO) - k_{ct} (EY \to SnO_2)$$

^bThe value was calculated by the expression

^cThe value was calculated by the expression

Figure S1. Chronoamperomertic *I*-t curve of pure SnO₂ collected at 0 V vs. Ag/AgCl under chopped light illumination.

Figure S2. (A) PEC cell configuration for hydrogen evolution measurement. (B) Hydrogen production for pristine ZnO and ZnO-Au-SnO₂-2 recorded in the PEC cell. (C) XPS spectra of ZnO-Au-SnO₂-2 before and after 6 hr of PEC measurement. The Zn 2p signals were consistent with the presence of ZnO with the binding energy of 1021 and 1044 eV for Zn $2p_{1/2}$ and Zn $2p_{3/2}$, respectively.