Electronic supplementary information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP₂ Nanowire Arrays on Carbon Cloth as a Flexible Cathode for Efficient Hydrogen Evolution

Mingyu Pi, ^a Tianli Wu, ^a Dingke Zhang, ^b Shijian Chen ^A and Shuxia Wang^A

^a School of Physics, Chongqing University, Chongqing, 401331, China

^b College of Physics and Electronic Engineering, Chongqing Normal

University, Chongqing, 401331, China.

*Corresponding author: Prof. Shijian Chen, E-mail: sjchen@cqu.edu.cn; Prof. Shuxia

Wang, E-mail: wangshuxia@cqu.edu.cn. Tel: +86-2365678362

Fig. S1 (a) Photographs of bare CC, $WO_3 NWs/CC$ and $WP_2 NWs/CC$. (b) Photograph of the fabricated flexible electrode.

Fig. S2 Nitrogen adsorption/desorption isotherm plots of CC and WP₂ NWs/CC.

Fig. S3 XRD patterns for the WO_3 and WP_2 nanoparticles.

Fig. S4 Low-magnification SEM images of the bare CC substrate (a) and WO₃ NWs/CC (b). SEM images of WO₃ (c) and WP₂ nanoparticles (d).

Fig. S5 EDX spectrum of the WP_2 NWs/CC.

Fig. S6 Turnover frequencies (TOF) for the WP₂ NWs/CC and WP₂ NPs/CC.

The number of active sites (n) was examined via cyclic voltammograms in phosphate buffer (pH = 7) at a scan rate of 50 mV s⁻¹ between -0.2V and +0.6V vs. RHE and n (mol) could be determined with the following equation:

$$n = Q/2F$$

Where Q (C) is the voltammetric charge, F is Faraday constant (96480 C mol⁻¹). For WP₂ NWs/CC, Q is 2.68×10^{-3} C, n is 1.39×10^{-8} mol. For WP₂ NPs/CC, Q is 4.98×10^{-4} C, n is 2.58×10^{-9} mol. TOF (s⁻¹) could be calculated with the following equation:

TOF = I / 2nF

Where I (A) was the current of the polarization curve obtained by LSV measurements.

Fig. S7 Calculated exchange current density for the $WP_2 NWs/CC$ in 0.5 M H_2SO_4 by applying extrapolation method to the Tafel plot.

Table S1. Comparison of HER performance of in acidic media of WP₂ NWs/CC with other nonnoble metal electrocatalsts (NWs: nanowires, NRs: nanorods, NSs: nanosheets, NPs: nanoparticles and SPs: submicron particles)

	Current	Corresponding	
Catalyst	Density	overpotential	Reference
	(mA cm ⁻²)	(mV)	
WP ₂ NWs/CC	10	109	This work
W ₂ C	10	~140	J. Mater. Chem. A, 2016, 4, 8204-8210
WC	10	264	Int. J. Hydrogen Energy,
			doi:10.1016/j.ijhydene.2016.06.063
WN NRs/CC	10	198	Electrochim. Acta., 2015, 154, 345-351
WS_2	10	310	Chem. Commun., 2015, 51, 8334-8337
WO _{2.9}	10	70	Nat. Commun., 2015, 6, 8064
WO ₂ -carbon	10	58	J. Am. Chem. Soc., 2015, 137, 6983-6986
NWs			
α -WP ₂ NRs	10	~200	Energy Environ. Sci., 2016, 9, 1468-1475
a-WP ₂ SPs	10	161	ACS Catal., 2015, 5, 145-149
β -WP ₂ NRs	10	148	J. Power Sources, 2015, 278, 540-545
WP NRs/CC	10	130	ACS Appl. Mater. Interfaces, 2014, 6,
			21874-21879
Amorphous WP	10	120	Chem. Mater., 2014, 26, 4826-4831
NPs			
MoP ₂ NPs/Mo	10	143	Nanoscale, 2016, 8, 8500-8504
MoP NSs/CF	10	200	Appl. Catal. B: Environ., 2015, 164, 144-
			150
MoP/NC	10	~130	Electrochim. Acta., 2016, 199, 99-107
MoP-CA2	10	125	Adv. Mater., 2014, 26, 5702-5707
FeP ₂ /C	10	>500	J. Mater. Chem. A, 2015, 3, 499-503
FeP ₂ NWs	10	61	Chem. Commun., 2016, 52, 2819-2822
FeP NSs	10	>200	Chem. Commun., 2013, 49, 6656-6658
Cu ₃ P NW/CF	10	143	Angew. Chem. Int. Ed., 2014, 53, 9577-9581
CoP NPs	10	~150	Electrochim. Acta., 2016, 199, 99-107
CoP NWs/CC	10	67	J. Am. Chem. Soc., 2014, 136,7587-7590
CoP/CNT	10	122	Angew. Chem. Int. Ed., 2014, 53, 3710-6714
NiP ₂ NSs/CC	10	75	Nanoscale, 2014, 6, 13440-13445
Ni ₂ P hollow NPs	10	116	J. Am. Chem. Soc., 2013, 135, 9267-9270
Ni ₁₂ P ₅ /NC	10	~230	Electrochim. Acta., 2016, 199, 99-107

Catalyst	Exchange current	Reference
	density (mA cm ⁻²)	
WP ₂ NWs/CC	0.13	This work
MoS ₂ /FTO	6.9×10 ⁻⁴	Nat. Mater., 2012, 11, 963-969
defect-rich MoS ₂	8.9×10 ⁻³	Adv. Mater., 2013, 25, 5807-5813
MoO ₃ -MoS ₂ /FTO	8.2×10 ⁻⁵	Nano Lett., 2011, 11, 4168-4175
bulk Mo ₂ C	1.3×10-3	Angew. Chem. Int. Ed., 2012, 51, 12703-12706
bulk MoB	1.4×10-3	Angew. Chem. Int. Ed., 2012, 51, 12703-12706
Co-NRCNTs	0.01	Angew. Chem. Int. Ed., 2014, 126, 4372-4376
WS ₂ NSs	0.02	Nat. Mater., 2013, 12, 850-855
CoSe ₂ NP/CP	$(4.9\pm1.4) \times 10^{-3}$	J. Am. Chem. Soc., 2014, 136, 4897-4900
Ni ₂ P hollow NPs	0.033	J. Am. Chem. Soc., 2013, 135, 9267-9270
NiP ₂ NS/CC	0.26	Nanoscale, 2014, 6, 13440-13445
Cu ₃ P NW/CF	0.18	Angew. Chem. Int. Ed., 2014, 53, 9577-9581
FeP ₂ /C	1.75×10-3	J. Mater. Chem. A, 2015, 3, 499-503
FeP ₂ NWs	0.55	Chem. Commun., 2016, 52, 2819-2822
CoP NWs/CC	0.288	J. Am. Chem. Soc., 2014, 136,7587-7590
CoP/CNT	0.13	Angew. Chem. Int. Ed., 2014, 53, 3710-6714
WP NRs/CC	0.29	ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879
α-WP ₂ SPs	0.017	ACS Catal., 2015, 5, 145-149
β -WP ₂ NRs	0.013	J. Power Sources, 2015, 278, 540-545
bulk MoP	0.034	Energy Environ. Sci., 2014, 7, 2624-2629
MoP-CA2	0.086	Adv. Mater., 2014, 26, 5702-5707
MoP ₂ NS/CC	0.83	J. Mater. Chem. A, 2016, 4, 7169–7173
MoP ₂ NPs/Mo	0.06	Nanoscale, 2016, 8, 8500-8504

Table S2. Comparison of exchange current density of WP₂ NWs/CC with other non-noble metal electrocatalsts (NWs: nanowires, NRs: nanorods, NSs: nanosheets, NPs: nanoparticles and SPs: submicron particles)

Fig. S8 XRD patterns before and after reaction for the WP $_2$ NWs/CC.

Fig. S9 SEM images of the WP_2 NWs/CC after 1000 CV sweeps.

Fig. S10 XPS survey spectra for the WP $_2$ NWs/CC.

Fig. S11 Schematic reaction pathway of hydrogen evolution on phosphorus atom of WP₂ in acid environment.

Fig. S12 Kinetic energy barrier profiles of hydrogen evolution reaction on Pt catalysts.

Table S3. Comparison of energy barrier for transition state of hydrogen atom adsorption and bond length for the WP_2 catalyst with the other catalysts.

	Energy barrier for	Bond	
Catalyst	transition state of	length	Reference
	hydrogen atom	(Å)	
	adsorption (eV)		
WP ₂	0.75	1.43	This work
Pt	0.67	-	
Pt	0.67	-	
MoP ₂	0.93	1.44	J. Power Sources, 2016, 328, 551-557
MoP	1.05	1.42	
Pt	0.69	-	
FeS ₂ /CNT	1.62	1.361	J. Am. Chem. Soc., 2015, 137, 1587-1592.
Co-FeS ₂ /CNT	1.23	1.365	
MoS ₂ /CoSe ₂	1.13	_	Nat. Commun., DOI: 10.1038/ncomms6982

Fig. S13 XRD patterns for the WP2 NWs/CC obtained at 600, 700 and 800 °, respectively.

Fig. S14 SEM images for the WP₂ NWs/CC obtained at (a, d) 600, (b, e) 700 and (c, f) 800 °C, respectively.

Fig. S15 Nitrogen adsorption /desorption plots for the WP2 NWs/CC obtained at 700 and 800 °C,

respectively.

Fig. S16 Niquist plots for the WP $_2$ NWs/CC obtained at 600, 700 and 800 °C, respectively.