## **Supplementary Information**

## For

## Characterizations of nanoporous structures: from three dimensions to two dimensions

Cang Zhao<sup>a,c</sup>, Yu Qiao<sup>a,b</sup>

<sup>a</sup> Department of Structural Engineering, University of California - San Diego, La Jolla, CA 92093-0085, U.S.A.

 <sup>b</sup> Program of Materials Science and Engineering, University of California - San Diego, La Jolla, CA 92093, U.S.A.
<sup>c</sup> X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA



Fig.S1. Quantitative SEM image analysis of nanoporous silica. (a1)-(a4) Original SEM images with the average pore size of (a1) 50 nm, (a2) 85 nm, (a3) 120 nm and (a4) 315 nm, respectively. (b1)-(b4) Enhanced images using the image filtering techniques. (c1)-(c4) Binary images converted from the enhanced images. (d1)-(d4) Segmented pore particles using the Watershed method on the inversed binary images.

| Fig.S2                                       | a1                    | a2                    | a3                 | a4                             |
|----------------------------------------------|-----------------------|-----------------------|--------------------|--------------------------------|
| Source                                       | Ref. [1]              | Ref. [2]              | Ref. [3]           | Brian A. Korgel                |
| Material                                     | Nanoporous<br>alumina | Nanoporous<br>alumina | Nanoporous titania | Gold nanorods<br>(white color) |
| Correlation length (nm)<br>(FFT method)      | 35                    | 235                   | 335                | 25                             |
| Average pore size (nm)<br>(Watershed method) | 25±5                  | 155±30                | 215±40             | 30±10*                         |
| Porosity (%)                                 | 39.9                  | 39.8                  | 29.0               | 44.9**                         |
| Fractal dimension                            | $1.057 \pm 0.007$     | $1.059 \pm 0.014$     | $1.061 \pm 0.014$  | $1.072 \pm 0.024$              |

| Table S1. Quantitative SEM image analysis results of nanostructures in interatur |  | Table S1. | Quantitative | SEM image | analysis results | of nanostructures | in literature |
|----------------------------------------------------------------------------------|--|-----------|--------------|-----------|------------------|-------------------|---------------|
|----------------------------------------------------------------------------------|--|-----------|--------------|-----------|------------------|-------------------|---------------|

\* Average rod size of gold nanorods \*\* Percentage of gold nanorods in the image box



Fig.S2. Quantitative SEM image analysis of nanostructured materials. (a1)-(a4) Original SEM images: (a1) Nanoporous alumina (Reproduced from Ref. [1] with permission from the Royal Society of Chemistry); (a2) Nanoporous alumina (Reproduced from Ref. [2] with permission from the Elsevier); (a3) Nanoporous titania (Reproduced from Ref. [3] with permission from the Nature Publishing Group); (a4) Gold nanorods (Reproduced with permission from Dr. Brian A. Korgel). (b1)-(b4) SIP enhanced images. (c1)-(c4) Rotational averages of the Fourier energy spectrums. The peaks in the Fourier energy spectrums indicate the correlation lengths of the short-range orders in the nanostructures.

## References

- 1. F. Casanova, C. Chiang, E., C.-P. Li, I. Roshchin, V., A. Ruminski, M., M. Sailor, J. and I. Schuller, K., *EPL*, 2008, **81**, 26003.
- 2. D. S. Raimundo, P. B. Calíope, D. R. Huanca and W. J. Salcedo, *Microelectronics Journal*, 2009, **40**, 844-847.
- 3. A. Imhof and D. Pine, *Nature*, 1997, **389**, 948-951.