

ARTICLE

Supporting Information

DNA-Templated Silver Nanoclusters: Structural Correlation and Fluorescence Modulation

S. Y. New,^{*a} S. T. Lee^a and X. D. Su^{*b}

^a School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Email: SiuYee.New@nottingham.edu.my; Tel: +603 8924 8762

^b Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602. E-mail: xd-su@imre.a-star.edu.sg; Tel: +65 6874 7091

Journal Name

ARTICLE

Table S1. Reported primary structure ssDNA used to form AgNCs

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ -)	Buffer	Remarks	Ref
First reported DNA-AgNCs	1) AG ₂ TCGC ₂ GC ₃	540-580/629-642	1–4	N/A	1:6:6	5 mM PBS pH 7.5 or 100 mM NaClO₄ or 5 mM PBS pH 7.5	- N _{Ag} is determined from ESI-MS.	1
Homopolymers	2) C _n (n = 5–11)	350-850/500-950					- N _{Ag} is determined from	2
	3) TG _n T (n = 3–6, 8, 9, 11)	350-850/500-950					ESI-MS.	
	4) A _n (n = 6, 9, 11)	No fluorescence	10	N/A	1:11:6.1	10 mM NH₄OAc,	- Homo-A, homo-T and	
	5) T _n (n = 6, 9, 11)	No fluorescence				рн 6.8	vield no fluorescence at	
	6) Series of mixed A/T strands	No fluorescence					neutral pH. - For C _n runs, n should be >4. - For G _n runs, n should be >5. - Terminal T in (3) is to increase synthesis yield and enhance analysis for ESI-MS.	
Cytosine- and thymine-rich DNA	7) C ₁₂	340/485; 440/525; 280 or 580/665; 650/700	5; 4; 3; 2	1; N/A; 23; 17		5 mM acetate buffer or PBS	- N _{Ag} is determined from Job's plot of emission	3–6
	8) T ₁₂	350/545	6	14			intensity vs. [DNA]:[Ag ⁺].	
	9) T ₄ C ₄ T ₄	370/475	6	N/A	1:6:6	E 10 mM haveta	- Thymine-rich DNAs favour blue/green	
$\begin{array}{c} 9 & T_{4}C_{4}T_{4} \\ \hline 10 & C_{4}T_{4}C_{4} \\ \end{array}$	10) C ₄ T ₄ C ₄	340/495 or 580/650	8	N/A	1.0.0 5–10 mM borate buffer, pH 10.5 -(7)-AgNCs for species: blue -(7)-AgNCs for species: blue -(7)-Ag	emitters; whereas cytosine-rich DNAs prefer red emitters. - (7)-AgNCs form multiple species: blue and green emitters (λ_{em} = 485 and 525 nm) are partially oxidised species and		

This journal is © The Royal Society of Chemistry 20xx

	DNA sequence (5'→3')	$\lambda_{\text{ex}}/\lambda_{\text{em}}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ ⁻)	Buffer	Remarks	Ref
		542/500					interconvertible with fully reduced red emitters (λ_{em} = 665 nm). - (7)-AgNCs in PBS buffer preferentially stabilises NIR species (λ_{em} = 700 nm). - Basic pH is needed to deprotonate N3 of thymine (pKa = 9.7) for clusters-binding. - (8)- and (9)-AgNCs are partially oxidised species. - Low concentration of (10) favours blue/green species; whereas high concentration favours red- emitters; attributed to intramolecular vs. intermolecular cluster templates.	7
	11) (C X G)n, X = A, T, C or G; n = 6–9	512/600 (X = G/C; n = 6)	N/A	N/A	1:8:16	20 mM PBS, pH7.0 with 1 mM Mg(OAc) ₂	 By varying synthesis ratio, type of middle base (X) or number of trinucleotide repeats (n), only emission intensity is affected. X = G gives the highest emission intensity, followed by C. No fluorescence observed when X = A/T. 	
Effect of C-Ag+-C pairs	12) n = 1	460/536	2	8			- N _{Ag} is determined from	8
5'-CCC(TTCC)	13) n = 2	540/608	4–5	61	1:6:6	20 mM PBS, pH	ESI-MS. - C ₂ at 5' and 3'-ends helps	
	14) n = 5	540/620	5–6	21		7.0	to stabilise AgNCs.	
3'-ccc[AACC] [']	15) n = 6	540/644	6	25			 Higher number of A–T pairs in repeating units (n) may hinder the coordination of C–Ag*–C. Higher number of repeated CC bases results in larger AgNCs. 	

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ ⁻)	Buffer	Remarks	Ref
Chemopalette-1 ^a	16) $C_3 T_3 A_2 C_4$ (B)	340/485		N/A		Water	- Longer λ emitters show better photo- and	9,10
	17) C ₃ TCT ₂ A ₂ C ₃ (G)	425/520	N/A	16 ± 3	1:6:6	Water	chemical stability in buffer. - Preparation under	
	18) C ₃ T ₂ A ₂ TC ₄ (Y)	475/572 ^c ; 475/560 ^{d, e}		38 ± 2 ^c ; 6.4 ^d ; 66.2 ^e		20 mM PBS, pH 6.5–8 ^c ; 25 mM PBS, pH 7.0 ^d ; 25 mM PBS with 30% PEG 200 ^e	crowded crowding condition (<i>i.e.</i> in presence of PEG 200) has improved the quantum yield.	
	19) $A_2T_2C_{12}A_2T_2$	N/A (Yellow)		68		N/A		
	20) C ₂ TC ₂ T ₂ C ₂ TC ₂ (R)	543/620 ^c ; 580/616 ^{d,e}		32 ± 4; 24.5 ^c ; 67.6 ^d		20 mM citrate, pH 5 ^c ; 25 mM PBS, pH 7.0 ^d ; 25 mM PBS with 30% PEG 200 ^e		
	21) C ₃ TA ₂ CTC ₄ (N)	650/705		34 ± 5		20 mM NH₄OAc, pH 6.5–8	-	
Chemopalette-2	$22) TGACTA_4C_3T_2A_2TC_4$	460/550	20–30	0.2			- N _{Ag} is determined from	11,12
	23) AGTCAC ₄ A ₂ C ₂ TGC ₃ TAC ₂ AC G ₂ ACT	530/600	8–14	10	1.5.5	20	Ag K-edge EXAFS. - Ag–DNA ligation, cluster	
	24) G ₂ CAG ₂ T ₂ G ₄ TGACTA ₅ C ₃ T ₂ A ₂ TC ₄	595/650	8–14	64	1:0:0	6.6 or water	cooperatively modulate	
	25) AGTC ₂ GTG ₂ TAG ₃ CAG ₂ T ₂ G ₄ TGACTA ₅ C ₃ T ₂ A ₂ TC ₄	640/700	8	52			AgNCs.	
Chemopalette-3	26) (CCCTA ₂) ₃ CCCTA	468/560					- Alternation of single C to	13
	27) (C <u>G</u> CTA ₂) ₃ C <u>G</u> CTA	466/554			1.5.5		G (as underlined) in (26)	
	$28) (CC\underline{G}TA_2)_3CC\underline{G}TA$	439/495	N/A	N/A	1:6:6	10 mM Tris/ HCl,	causes blue-shift in	
	29) (<u>GG</u> CTA ₂) ₃ <u>GG</u> CTA	453/515	_			рп 7.0	- Double and triple C to G	
	30) (<u>GCG</u> TA ₂) ₃ <u>GCG</u> TA	548/623	_				mutations accounts for the	
	31) (<u>GGG</u> TA ₂) ₃ GGGTA	560/626					remarkable red-shift.	
Chemopalette-4	32) CGC ₆ T ₂ G ₂ CGT	270/558	21 ^b		1:10:2.4		- N _{Ag} is determined from	14–16
	33) CGC ₆ TCG ₂ CGT	270/557	21 ^b		1:6:3		- Mixed species were	
	34) TGC ₂ T ₄ G ₄ ACG ₂ ATA	270/562	10	N/A	1:12.5:6.27	10–40 mM	purified <i>via</i> HPLC-MS.	
	$35) T_2C_4AC_2AC_3AG_2C_4GT_2$	270/632	16	1	1:12:6	pH 7	is shown. Dark species	
	$36) T_2 CGC_6 GC_4 AG_2 CGT_2$	270/644	15	1	1:12:6	1	appear at lower N _{Ag} and are not shown here.	
	37) C ₃ AC ₃ AC ₃ TC ₃ A	270/777	20 ^b		1:8:4]	- Larger clusters tend to emit at longer $\lambda_{\rm em}.$	

4 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref
IR emitting species	$38) C_3AC_3AC_3\underline{T}C_3\underline{A}$	750/810	10	30 ± 2			- N _{Ag} is determined from	15,16
	39) C ₃ AC ₃ AC ₃ <u>G</u> C ₃ <u>A</u>	720/770	9–10	30 ± 5	1:8:4	10 mM citrate	ICP-AES.	
	40) C ₃ AC ₃ AC ₃ <u>A</u> C ₃ <u>A</u> C <u>3</u>	840/870	9	6 ± 2			sequence C ₃ AC ₃ AC ₃ XC ₃ Y. - Chromatographically separated and identified with AES study.	
AgNCs with enhanced stability	41) AC ₃ GA ₂ C ₂ TG ₃ CTA ₂ A ₃ T ₂ A ₂ T ₄	535/615	N/A	30	1:6:6	20 mM PBS, pH 6.8	 Shelf-life of > 1 year. Highly resistant to oxidation, pH and temperature. 	17
Intergrowth of emitter pair ^a	NC1 – X _n – NC2; NC1 and NC2: sequence (16) to (21) from <i>'Chemopalette-1'</i> ; X = A, T, C or G; n = 0–70	λ _{em} ~604 (YN, NN, BN, RN and GN) λ _{em} ~630 for other combination	N/A	16.3 (for Y - T ₁₅ - N)	1:6:6	5 mM PBS containing 50 mM NaNO ₃ , pH 7.0	- The optimised base type for spacer (X) is T, which also shows length- dependent fluorescence. The best length (n) is 15. - Disruption of spacer through hybridization with complementary sequence significantly decreases the fluorescence.	18
Chameleon-like violet clusters	42) <u>C₃AC₃AC₃TC₃A</u> C ₃ GC ₂ GCTG ₂ A 43) <u>C₄A₂CTC₂T₂C₃GC₂AC</u>	NA/790 490/550	11	— N/A	1:8:4	10 mM citrate/citric acid buffer, pH 6.5	- N_{Ag} is determined from stoichiometry study from absorption spectra. - Chromatographically purified. - Underlined sequence denotes the nucleation template, with the following sequence as recognition site. - (42) derives from (38). - (42)- and (43)-AgNCs transform the weakly emissive violet chromophore to strong NIR and green emitter respectively (ΔA_{abs} 330 & 90 nm). - The changes are due to alteration of shape and	19,20

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}(nm)$	N _{Ag}	Quantum	Synthesis ratio	Buffer	Remarks	Ref
				Yield (%)	(DNA:Ag⁺:BH₄⁻)			
							upon binding. - Violet clusters are favoured when Ag⁺:DNA = 4–10 and prepared at high oxygen pressure.	
AgNCs with high yield	44) T ₂ CC ₃ AC ₃ A ₄ G ₂ C ₃ GT ₂	571/635	24 ^b	94 ± 8	1:10:10	10 mM NH₄OAc	- AgNCs with the highest quantum yield reported to date.	21

^a Abbreviation of sequences are given in (), with B, G, Y, R, N represent blue, green, yellow, red and NIR emitters respectively.

^b N_{Ag} for strand dimer complexes.

 ${}^{c,\,d,\,e}\,\lambda_{ex}/\lambda_{em}$ (nm) and quantum yield of AgNCs formed at the corresponding buffer.

Table S2. Reported i-motif and G-quadruplex templates that have been used to form AgNCs

	DNA sequence (5'→3')	λ _{ex} /λ _{em} (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref.
i-motif $R^{-N} \rightarrow 0$ $R^{-N} \rightarrow 0$ $H^{-N} \rightarrow 0$ H^{-N	45) (TA ₂ C ₄) ₄ 46) (C ₄ A ₂) ₃ C ₄	460/560 560/625 500/570 560/625	N/A	N/A	1:16:16	10 mM formate/ca codylate/P BS/borate, pH 5–9	 Both (45)- & (46)-AgNCs show pH-dependent optical behaviour. Red species is dominant at pH 6, which is the optical pH for i-motif. This is further corroborated by SEC. Green species is most favoured at pH 8–9. SEC study revealed that it is entrapped within similar structure as i-motif. 	22
	47) C ₄ A ₄ C ₃	543/613 ^{<i>a,b</i>}	1–4 ^b	$16 \pm 2^{a};$ 37 ± 2^{b}	1:4:4	MES containing	- N _{Ag} is determined from HPLC-MS.	10,23
	48) C ₄ A ₄ C ₄	575/635 ^{<i>a,b</i>} ; ; 540/600 ^{<i>c, d</i>}	N/A	$ \begin{array}{c} 11 \pm 2^{a}; \\ 12 \pm 1^{b}; \\ 14.5^{c}; \\ 32.1^{d} \end{array} $	1:4:4	50 mM Na ⁺ , pH 5 ^a ; PBS, pH 7 ^b ; 25 mM	- (47) & (48): intermolecular i-motif. - (49) & (50): intramolecular i-motif.	
	49) (C ₃ TA ₂) ₂ C ₂ TA ₂ C ₃ T	463/538 ^{a,b} ; 520/575 ^{c, d}	5–8ª	10 ± 2 ^{<i>a</i>} ; 6.7 ^{<i>c</i>} ; 34.7 ^{<i>d</i>}	1:6:6	PBS, pH7 <i>°</i> ; 25 mM PBS, pH7,		
	50) GC ₅ (GC ₄) ₃ T	582/655 _{<i>a,b</i>}	N/A	11 ± 1 ^a	1:6:6	30% PEG 200 ^{<i>d</i>}		
	51) $C_4 - X_1 X_2 X_3 X_4 - C_4$ X = mixture of A/T	570– 590/615– 630	N/A	78 (X = ATAT)	1:6:1	10 mM PBS, pH 7.6	 Changing the position of T can modulate the quantum yield. X = ATAT gives the best yield, but changing it to TATA reduces the yield to 15%. 	24
G-quadruplex	52) (G ₂ T) ₄ T ₂ G(TG ₂) ₄	325/420; 510/680	2				- N _{Ag} is determined from MALDI-TOF MS.	
	53) (G ₃ T ₂ A) ₃ G ₃	390/435	1	N/A	1.6.6	20 mM PBS		25
	54) (G ₄ T ₄) ₃ G ₄	430/565	2		1.0.0	containing		
	55) $G_3TAG_3CG_3T_2G_3$	435/565	2	_		10 mM KCl, pH 8		
	56) (G ₃ T) ₄	425/560	2	_				
R H	57) GTG ₃ TAG ₃ CG ₃ T ₂ G ₂	240/390	3					

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

	DNA sequence (5'→3')	λ _{ex} /λ _{em} (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄`)	Buffer	Remarks	Ref.
	58) G ₃ T ₄ G ₄	580/652	2-4ª	10 ± 2 ^a	1:4:4	57–60)	- N _{Ag} is determined from ESI-	23
	59) G ₄ T ₄ G ₄	580/648	N/A	8 ± 2 ^{<i>a</i>}	1:4:4	MES	MS.	
	60) AG ₃ (T ₂ AG ₃) ₃	557/621	5–12 ^a	7 ± 2ª	1:6:6	containing 50 mM Na⁺.	- (58) & (59): intermolecular G-quadruplex.	
	61) A(G ₄ C) ₃ G ₅ C	610/670	N/A	10 ± 2 ^a	1:6:6	pH 5 ^a ; PBS, pH 7 ^b	- (60) & (61): intramolecular G-quadruplex.	
	62) (AG ₃)(T ₂ AG ₃) ₃	445/520; 560/620	N/A	N/A	1:6:6	Deionised water	 Red emitters are associated with G bases, whereas green emitters are located between A and G bases. In the presence of Na*, fluorescence is significantly quenched as a result of anti-parallel G- quadruplex formation. 	26
Logic gate using G-quadruplex & i-motif as templates:	63) G ₃ T ₂ AG ₃ T-C ₆ -AC ₃ T ₂ AC ₃	494/570; 581/646° or 537/601 ^b	N/A	N/A	1:6:6	10 mM TrisOAc, pH 8° or 10 mM TrisOAc containing 100 mM K ⁺ , pH5.0 [°]	 - (63) and (64) exist as hairpin structures without K⁺ and H⁺ inputs. - In the presence of K⁺ and H⁺, G- and C-tracts (shown in red and blue respectively) are convertible to G- quadruplex and i-motif. 	27
	64) (G ₃ T) ₂ - C ₆ -(AC ₃) ₂	512/582; 575/634				10 mM TrisOAc, pH 8	 - (63)-AgNCs shows emission in orange region due to structural change; whereas (64) -AgNCs show different intensity in yellow and red region. 	

 ${}^{a,\,b}\,\lambda_{ex}/\lambda_{ex}$ (nm) and quantum yield of AgNCs formed at the corresponding buffer.

Table S3. A summary of hairpin loop-hosted AgNCs

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref.
loop region stem region							 Loop region is the primary site for nucleation and encapsulation of AgNCs.²⁸⁻³¹ Loop size should be > 3 bases, otherwise it is sterically impossible to form.³² 	
(i) Loop of different base type:	TATC ₂ GT $-X_5$ - ACG ₂ ATA	581/642	1				- N _{Ag} is determined from ESI-	30
	$(3) \times (-C)$	5/1/043	1	N/A	1.5 6.11 2	40 mM	- (65)- and (66)-AgNCs	
	67) X = T	Ν/Δ	2		1.5.0.11.2	NH ₄ OAc.	contain smaller $N_{\rm sc}$ than the	
	68) X = A	471/534	2 a	-		pH 6.9	rest, even though they are brighter.	
(ii) C-loop of different size:	69) TATC ₂ GT –C _n – ACG ₂ ATA n = 3–12	Group I: 553-600/614-668 (n = 3-8) Group II: 543-560/610-628 (n = 9-12) Group III: 450-483/534-596 (n = 4-8; 11-12) Group IV: 407-413/524-530 (n = 9-10)	N/A	34 (n = 7; red emitter); 3.7 (n = 9; green emitter)	1:6:2	40 mM NH₄OAc, рН6.9	 Grouping (I – IV) is defined by abrupt fluorescence attenuation as loop size (n) increases. All samples, except n = 3, produce distinct red and green species. For group I and III, λ_{em} generally red-shifts as loop size increases. 	29
	70) CCCCCCC –C ₈ – GCCCGCC	438/520; 557/626	N/A	N/A	1:18:8	20 mM HEPES, pH7.6		33
	GCATATCG $-C_n$ - CGATATGC 71) n = 5	466/522; 555/649					- All samples, except (73) and (74) produce distinct red and green species.	33
	72) n = 8	450/550; 530/630	N/A	N/A	1:18:8	20 mM HEPES,	- Green emitters are oxidised species, whereas the red one	
	73) n = 11 74) n = 14	564/630 570/635				pH7.6	as reduced species. - Light exposure and NaBH₄ treatment reversibly	
							decrease and recover fluorescence. Anti- correlation was observed for green emitters.	

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

	DNA sequence (5'→3')	$\lambda_{ex}/\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ ⁻)	Buffer	Remarks	Ref.
							-Addition of Hg ²⁺ weakens the binding of DNA-Ag and causes irreversible quenching.	
(iii) T-loop with C-/G-rich stem:	75) (ACCC) ₃ -T _n - (GGGT) ₄ n = 0, 4, 5, 6, 8, 10	512/581; 580/639	1–4 (n = 5)	N/A	1:6:6	10 mM Tris-HNO ₂	- Red fluorescence (λ_{em} = 639 nm) is 7x weaker than yellow (λ_{em} = 581 nm).	31
	76) (AACCC) _x -T ₅ - (GGGT) _x x = 1-4		N/A			pH7.0	 For (75), when n = 0, excited-state lifetime is shorter and fluorescence intensity is 12.5x weaker. (75) with varied loop size shows innocuous result due to weak binding of Ag* to T. Fluorescence intensity increases as x increases, elucidating that longer stem may provide better protection environment. Adding Mg²⁺, Pb²⁺ or K* affects the stability of stem duplex or converts G-rich strand to G-quadruplex, thus influencing the emission intensity. This enables logic gate construction. 	

Table S4. Reported dsDNA templates that have been used to form AgNCs

	DNA sequence	$\lambda_{ex/}\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref.
Duplex	77) $5'-G_3T_4G_4-3'$	554/616	2–6	5 ± 1	1:4:4	PBS, pH 7	- N _{Ag} is determined from ESI-	23
5′3′	$\begin{array}{c c} & 3 - c_4 A_4 C_3 - 5 \\ \hline 78) & 5' - G_4 T_4 G_4 - 3' \\ & 3' - C_4 A_4 C_4 - 5' \end{array}$	635/706	N/A	7 ± 1	1:4:4	-	- By comparing the duplex with individual C- & G-rich	
3' 5'	79) 5'-A(G ₄ C) ₃ G ₅ C-3' 3'-T(C ₄ G) ₃ C ₅ G-5'	597/666		10 ± 1	1:6:6		strands, duplex binds more Ag ⁺ .	
	80) 5'-(C ₃ A) ₂ C ₃ GAGA(TGC) ₂ -3' 3'-(G ₃ T) ₂ G ₃ CTCT(ACG) ₂ -5'	517/583	N/A	N/A	1:10:10	0.02 M PBS,	- Longer C in (82) & (83) stimulates higher fluorescence intensity.	34
	81) 5'-(C_3A)_2C_3 GAGA(TGC)_2-3' 515/579 3'-(TG_3)_4CTCT(ACG)_2-5 515/577 82) 5'-(C_4A)_GAGA(TGC)_2-3'	- Hybridisation with G-rich strand can enhance the fluorescence.						
	82) 5'-(C ₃ A) ₄ GAGA(TGC) ₂ -3' 3'-(G ₃ T) ₂ G ₃ CTCT(ACG) ₂ -5'	515/577					 Longer G-strand (83) stimulates higher fluorescence intensity, as 	
	83) 5'-(C ₃ A) ₄ GAGA(TGC) ₂ -3' 3'-(TG ₃) ₄ CTCT(ACG) ₂ -5'	515/577		39.7			compared to (82).	
Gap 5'OH_PO ₃ 3'	84) 5'-GCTCATG ₂ TG ₂ G ₂ CAGCGC ₂ TC-3' 3'-CGAGTAC ₂ AC ₂ XC ₂ GTCGCG ₂ AG-5' X = A, T, C or G	560/643 (X = C)	N/A	47.2	1:15:3	20 mM PBS with 1 mM	 Base opposite to gap site is represented as X. Bright fluorescence only forms when X is C. 	35
3' 5'	85) $5'-C_2ACG_2ATCTGA G_3TGA_3TAT_2CTC-3'$ $3'-G_2TGC_2TAGACTXC_3ACT_3ATA_2GAG-5'$ X = A, T, C or G	585/665 (X = C)				₩g² ⁻ , рн 7	gap site gives fast evolution of 1.5 h.	
AP site								
	Y = AP site; X = A, T, C or G						 Flanking bases are shown in red. Base opposite to AP site is represented as X. 	
3' X 3'								

ARTICLE

Journal Name

	DNA sequence	$\lambda_{ex/}\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ -)	Buffer	Remarks	Ref.
(i) Flanking Bases & the base opposite to AP site:	86) 5'-ATG₂TG GY GGCAGCG-3' 3'-TAC₂ACCXCCGTCGC-5'	588/670 (X = C)	N/A	N/A	1:10:11.6	20 mM PBS, 1 mM Mg(OAc) ₂ , pH 7	- Only forms bright fluorescence when X is C. - Both flanking bases must be G.	36
(ii) Number of AP sites:	87) 5'-ATGT ₂ GG Y GGTCAGGYGGT ₂ ATG- 3' 3'-TACA ₂ CCCCCAGTCCCCCA ₂ TAC-5'	588/670	2	N/A	DNA/Ag ⁺ varied; Ag ⁺ :BH ₄ ⁻ = 4:1	20 mM PBS with 1 mM	 AgNCs form at AP site. (87) with two distinct AP sites give higher emission 	37
	 88) 5'-ATG₂TGGYYGGCAGCG-3' 3'-TAC₂ACCCCCCGTCGC-5' 	550/618	4			Mg²⁺, pH 7	intensity than that with one AP site. - Two consecutive AP sites in (88) results in blue shift of λ_{em} and larger AgNCs.	
(iii) Sequences one base away from AP site:	<pre>89) 5'-ATG₂TMGYGPCAGCG-3' 3'-TAC₂ANCCCQGTCGC-5' M/P = A, T, C or G; N/Q = complement to M/P</pre>	468– 585/546– 667 (refer to 'Remarks')	2	N/A	DNA/Ag⁺varied; Ag⁺:BH₄` = 4:1	20 mM PBS with 1 mM Mg²+, pH 7	$\begin{array}{l} eq:sphere$	37
Mismatched site							- Mismatched base pairs are in blue and purple.	
(i) Mismatched site with T:	90) 5'-C ₃ TA ₂ C ₃ TA ₂ C ₃ TA ₂ C ₃ T-3' 3'-G ₃ AT ₂ G ₃ ZT ₂ G ₃ AT ₂ G ₃ A-5' Z = A, T, C or G;	520/570 (Z = T)	3–6 (Z = T)	8.1 %	1:6.6:6.6	10 mM Tris- HNO ₃	 - N_{Ag} is determined from ESI- MS. - Fluorescence intensity 	38
	91) 5'-G ₂ CACA ₃ CACGCAC ₂ TCA ₂ -3' 3'-C ₂ GTGT ₃ GTTCGTG ₂ AGT ₂ -5' 92) 5'-AG ₃ T ₂ TG ₃ T ₂ AG ₃ T ₂ TG ₃ -3'	520/570 520/570	N/A	N/A			increases follows the order of T–C > T–G > T–T. - Fluorescence intensity	
	3'-TC ₃ A ₂ TC ₃ A ₂ TC ₃ A ₂ TC ₃ -5'						increases as number of T–T mismatched increases.	
(ii) Mismatched site with C:	93) 5'-GCATGTAC ₂ C _n G ₂ A ₂ GATCG-3' 3'-CGTACATG ₂ C _n C ₂ T ₂ CTAGC-5'	563/654 (n = 4)	4 (n = 4)	N/A	1:4:2	20 mM PBS with 1 mM	 - N_{Ag} is determined from Job's plot of emission 	39

12 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

	DNA sequence	$\lambda_{\text{ex}/}\lambda_{\text{em}}(\text{nm})$	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref.
	n = 3, 4, 5					Мg²+, рН 7	intensity vs. [DNA]:[Ag*]. - One-size AgNCs form when n = 4; whereas n = 3 & 5 shows large wavelength- dependent emission ($\Delta\lambda_{em}$ = 150 nm). - Presence of low concentration of halides can enhance the fluorescence.	
Bulge	X = bulge base (A, T, C or G)						- Flanking bases are shown in red and blue.	
(i) Bulge C:	94) 5'-ATG ₂ TG <mark>G G</mark> GCAGCG-3' 3'-TAC ₂ ACC X CCGTCGC-5'	589/652 (X = C)	N/A	N/A	1:15:6	PBS with 1 mM Mg ²⁺ , pH 7	 Only X = C gives bright fluorescence. The bulge site has to be surrounded by context G. (94)-AgNCs are 6.7x and 2x brighter than the corresponding gap- and AP- derived AgNCs. 	40
(ii) Bulge T:	95) 5'-CGCTGCG X GCAC₂AT-3' 3'-GCGACG <mark>C C</mark> GTG₂TA-5'	565/624 (X = T)	N/A	N/A	1:15:6	20 mM PBS with 1 mM Mg ²⁺ , pH 7	 Only X = T gives bright fluorescence, presumably bulge T located in a more intrahelical state which allows better Ag⁺-binding. Stacking interaction with flanking bases may also affect the electronic properties of AgNCs. 	41
Loop								
5' 3' (i) Effect of loop size and distance of mutation point:	5'-GTGCAC2TGACTC2TGTG2AGA2G-3' 3'-CACGTG2ACTGAG2CnCAC2TCT2C-5'						 Mutation points are shown in red. Mutation point should be < 3 bases away from loop. Only fully matched duplex 	42

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, **00**, 1-3 | **13**

ARTICLE

Journal Name

	DNA sequence	$\lambda_{ex/}\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag⁺:BH₄⁻)	Buffer	Remarks	Ref.
	96) n = 4 97) n = 6 98) n = 8	485/560; 560/630 520/572 560/620	N/A	N/A 34 ± 2 N/A	1:6:6	20 mM PBS, 1 mM Mg(OAc) ₂ , pH 7	forms bright fluorescence. - n = 6 gives the best differentiation between fully matched and mismatched stem region.	
(ii) Identity of mutation point:	99) 5'-G ₂ AT ₂ AT ₂ GT ₂ A ₃ T <mark>AT₂GATA₂G₂ATATA-3' 3'-C₂TA₂TA₂CA₂T₂ -C₆- TATA₂CTAT₂C₂TATAT-5'</mark>	476/545	N/A	N/A	1:6:6	20 mM PBS, 1 mM Mg(OAc) ₂ , pH 7	 Matched T/A gives the most distinctive signal than other mutation points. Other matched base pairs are distinguishable from their mutated analogues but with much weaker signal. 	42
(iii) Strand exchange reaction:	100) 5'-CT ₂ CTC ₂ A $-C_6$ - CAG ₂ AGTCAG ₂ TGCAC-3' (S1) 3'- GA ₂ GAG ₂ AGTC ₂ TCAGTC ₂ ACGTGACT ₂ GAT ₂ GT-5' (S2)	575/635	N/A	N/A	1:6:6	20 mM PBS, 1 mM Mg(OAc) ₂ , pH 7	- S1 and S2 are complementary (except extra sequences in S2 highlighted in orange) - Adding another strand wholly complement to S2 can disrupt the hybridization and turn off the fluorescence.	43

Table S5. A summary on design of NCB

	DNA sequence ^a	$\lambda_{ex/}\lambda_{em}(nm)$	Enhancement	Synthesis ratio	Buffer	Remarks	Ref.
			ratio	(DNA: Ag ⁺ : BH ₄ ⁻)			
Polytcytosine heads (C _{n1} and C _{n2}):	101) C ₂ TTAATC ₂	580/650	1851 ± 686	1:12:6	20 mM PBS,	- Longer C _n gives higher emission intensity.	44
	102) C ₃ TTAATC ₃	645/695	213 ± 8		pH6.7	- Emission peak blue-shifts as the length (n) increases.	
	103) C ₃ TTAATC ₄	580/640	3465 ± 928				
	104) C 4TTAAT C 4	580/635	760 ± 97				
	105) C₅TTAATC₅	525/585	408 ± 6				
	106) C ₆ TTAATC ₆	525/590	242 ± 6				
	107) C7TTAATC7	525/590	62 ± 13				
	108) C ₈ TTAATC ₈	460/555	24 ± 2				
Linker (NNNNN):	109) C ₃ TC ₄	649 <i>^b</i>	356 ± 15	1:12:6	20 mM PBS,	- Adding T to 3' side of linker causes red shift.	44
	110) C ₃ TTC ₄	646 <i>^b</i>	479 ± 28		pH6.7	- Adding A to 3' side of linker cause blue shift.	
	111) C ₃ TTAC ₄	646 <i>^b</i>	324 ± 7			- Placing C (underlined) close to polyC heads tends to	
	112) C ₃ TTAAC ₄	633 <i>^b</i>	824 ± 105			activate green-emitting species.	
	113) C ₃ TTAATC ₄	636 <i>°</i>	3465 ± 928				
	114) C_3 TTAATTC ₄	650 <i>^b</i>	238 ± 17				
	115) C ₃ TTAATTAC ₄	635 <i>°</i>	659 ± 87				
	116) C ₃ TTAATTAAC ₄	632 <i>^b</i>	527 ± 73				
	117) C ₃ TTAATTAATC ₄	637 <i>^b</i>	398 ± 17				
	118) C ₃ TTAATTAATTC ₄	655 <i>°</i>	219 ± 11				
	119) C ₃ CTAATC ₄	640 <i>^b</i>	161 ± 9				
	120) C ₃ T <u>C</u> AATC ₄	630 <i>^b</i>	413 ± 79				
	121) C ₃ TT <u>C</u> ATC ₄	640 <i>^b</i>	579 ± 27				
	122) C ₃ TTA <u>C</u> TC ₄	620 <i>^b</i>	132 ± 5				
	123) C ₃ TTAA <u>C</u> C ₄	635 %	277 ± 18				
Enhancer (hanging region):	124) T ₁₂	490/535	N/A	1:6:6	20 mM PBS,	- PolyG tends to stabilise red-emitting species.	45,46
	125) G ₃ (AG ₄) ₃	520/590	N/A		pH 6.6	- PolyT tends to stabilise green-emitting species.	1
	126) G ₃ (TG ₄) ₃	580/636	N/A				

^a Sequence of the relevant component. Full sequence is not shown at here.

 $^{b} \lambda_{em}$

ARTICLE

Journal Name

Table S6. Selected tsDNA templates used to form AgNCs

	DNA sequence	$\lambda_{ex/}\lambda_{em}$ (nm)	N _{Ag}	Quantum Yield (%)	Synthesis ratio (DNA:Ag ⁺ :BH ₄ -)	Buffer	Remarks	Ref.
tsDNA	127) 5'-TCTCTCTCTCTCTT-3' 3'-AAGAGAGAGAGAGAGGA-5' 5'-TTCTCTCTCTCT-3'	N/A	N/A	N/A	1:6:24 or 1:8:32	10 mM PBS, containing 100 mM	- N _{Ag} is determined from ESI-MS. - CG:C ⁺ sites are shown	47
	128) 5'-TTCCTTCCTT-3' 3'-AAGGAAGGAAGGAA-5' 5'-TTCCTTCCTTCCTT-3'	480/534	2			NaNO ₃	in red. - (128)-AgNCs with two successive CG-C* sites give the best result; (129)-AgNCs with three successive sites form multiple species. - Emission intensity increases as number of	
	129) 5'-TTCCCTTTCCCTT-3' 3'-AAGGGAAAAGGGAA-5' 5'-TTCCCTTTTCCCTT-3'	420–480/ 530–550	3					
	130) 5'-TTCCTTTTTCCTT-3' 3'-AAGGAAAAAAGGAA-5' 5'-TTCCTTTTTTCCTT-3'	480/534	N/A					
	131) 5'-TTCCTTCCTTCCTTCCTT-3' 3'-AAGGAAGGAAGGAAGGAAGGAA-5' 5'-TTCCTTCCTTCCTTCCTT -3'	480/534	N/A				CG·C ⁺ sites increases (<i>i.e.</i> (131)-AgNCs give higher intensity than (130)- AgNCs).	
X-shaped DNA	132) 5'-CGA CCG ATG AAT AGC GGT CAG ATC CGT ACC TAC TCG-3' 5'-CGA GTA GGT ACG GAT CTG CGT ATT GCG AAC GAC TCG -3' 5'-CGA GAC CAT ACG TAG AGC ACC GCT ATT CAT CGG TCG -3' 5'-CGA GTC GTT CGC AAT ACG GCT GTA CGT ATG GTC TCG -3'	520/621	N/A	19.8	1:7:14	50 mM NH₄OAc	 - (132) and (133) contains composition ratio of C & G of 55.6%. - (132)-AgNCs show brighter fluorescence as it contains one additional arm. - (133)-AgNCs show slower reaction which 	48
Y-shaped DNA	133) 5'-CGA CCG ATG AAT AGC GGT CAG ATC CGT ACC TAC TCG -3' 5'-CGA GTC GTT CGC AAT ACG ACC GCT ATT CAT CGG TCG -3' 5'-CGA GTA GGT ACG GAT CTG CGT ATT GCG AAC GAC TCG-3'	N/A/630	N/A	11.1	1:7:14	50 mM NH₄OAc	may due to smaller number of base-pairs.	48

ARTICLE

References:

- 1. J. T. Petty, J. Zheng, N. V. Hud, R. M. Dickson, J. Am. Chem. Soc., 2004, 126(16), 5207.
- 2. D. Schultz, E. Gwinn, Chem. Commun., 2011, 47(16), 4715.
- 3. C. M. Ritchie, K. R. Johnsen, J. R. Kiser, Y. Antoku, R. M. Dickson, J. T. Petty, J. Phys. Chem. C., 2007, 111(1),175.
- 4. T. Vosch, Y. Antoku, J. Hsiang, C. I. Richards, J. I. Gonzalez, R. M. Dickson, Proc. Natl. Acad. Sci. U.S.A., 2007, 104(31), 12616.
- 5. Y. Antoku, Fluorescent Polycytosine-Encapsulated Silver Nanoclusters, Georgia Institute of Technology, 2007.
- 6. B. Sengupta, C. M. Ritchie, J. G. Buckman, K. R. Johnsen, P. M. Goodwin, J. T. Petty, J. Phys. Chem. C., 2008, 112, 18776.
- 7. H. Liu, Y. Wang, L. Zhang, Y. Shao, B. Zheng, *Mater. Lett.*, 2015, **139**, 265.
- 8. G. Y. Lan, W. Y. Chen, H. T. Chang, RSC Adv., 2011, 1(5), 802.
- C. I. Richards, S. Choi, J. C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y. L. Tzeng, R. M. Dickson. J. Am. Chem. Soc., 2008, 130(15), 5038.
- 10. Z. Huang, J. Ren, W. Yang, X. Qu, Chem. Commun., 2013, 49(92), 10856.
- 11. J. Sharma, H. C. Yeh, H. Yoo, J. H. Werner, J. S. Martinez, *Chem. Commun.*, 2010, **46**(19), 3280.
- 12. M. L. Neidig, J. Sharma, H. C. Yeh, J. S. Martinez, S. D. Conradson, A. P. Shreve, J. Am. Chem. Soc., 2011, 133, 11837.
- 13. G. Liu, D. Q. Feng, X. Mu, W. Zheng, T. Chen, L. Qi, D. Li, J. Mater. Chem. B., 2013, 1(16), 2128.
- 14. D. Schultz, E. G. Gwinn, Chem. Commun. 2012, 48(46), 5748.
- 15. J. T. Petty, C. Fan, S. P. Story, B. Sengupta, A. S. J. Iyer, Z. Prudowsky, R, M. Dickson, J. Phys. Chem. Lett., 2010, 1(17), 2524.
- 16. J. T. Petty, C. Fan, S. P. Story, B. Sengupta, M. Sartin, J. C. Hsiang, J. W. Perry, R. M Dickson, J. Phys. Chem. B., 2011, 115(24), 7996.
- 17. J. Sharma, R. C. Rocha, M. L. Phipps, H. C. Yeh, K. A. Balatsky, D. M. Vu, A. P. Shreve, J. H. Werner, J. S. Martinez, *Nanoscale*, 2012, **4**(14), 4107.
- 18. J. L. Ma, B. C. Yin, B. C. Ye, RSC Adv., 2015, 5(119), 98467.
- 19. J. T. Petty, B. Giri, I. C. Miller, D. A. Nicholson, O. O. Sergev. T. M. Banks, S. P. Story, Anal. Chem., 2013, 85, 2183.
- 20. J. T. Petty, O. O. Sergev, A. G. Kantor, I. J. Rankine, M. Ganguly, F. D. David, S. K. Wheeler, J. F. Wheeler, *Anal. Chem.*, 2015, **87**(10), 5302.
- 21. D. Schultz, K. Gardner, S. S. R. Oemrawsingh, N. Markešević, K. Olsson, M. Debord, D. Bouwmeester, E. Gwinn, Adv. Mater., 2013, 25(20), 2797.
- 22. B. Sengupta, K. Springer, J. G. Buckman, S. P. Story, O. H. Abe, Z. W. Hasan, Z. D. Prudowsky, S. E. Rudisill, N. N. Degtyareva, J. T. Petty, J. Phys. Chem. C., 2009, **113**, 19518.
- 23. W. Li, L. Liu, Y. Fu, Y. Sun, J. Zhang, R. Zhang, *Photochem. Photobiol. Sci.*, 2013, **12**(10), 1864.
- 24. T. Li, N. He, J. Wang, S. Li, Y. Deng, Z. Wang, RSC Adv., 2016, 6(27), 22839.
- 25. J. Ai, W. Guo, B. Li, T. Li, D. Li, E. Wang, Talanta, 2012, 88, 450.
- 26. H. C. Hsu, M. C. Ho, K. H. Wang, Y. F. Hsu, C. W. Chang, New J. Chem., 2015, 39(3), 2140.
- 27. T. Li, L. Zhang, J. Ai, S. Dong, E. Wang, ACS Nano., 2011, 5(8), 6334.
- 28. P. R. O'Neill, K. Young, D. Schiffels, D. K. Fygenson, Nano Lett., 2012, 12, 5464.
- 29. P. R. O'Neill, L. R. Velazquez, D. G. Dunn, E. G. Gwinn, D. K. Fygenson, J. Phys. Chem. C., 2009, 113, 4229.
- 30. E. G. Gwinn, P. R. O'Neill, A. J. Guerrero, D. Bouwmeester, D. K. Fygenson, Adv. Mater., 2008, 20(2), 279.
- 31. J. Li, X. Jia, D. Li, J. Ren, Y. Han, Y. Xia, E. Wang, Nanoscale, 2013, 5(13), 6131.
- 32. I. Tinoco, O. C. Uhlenbeck, M. D. Levine, Nature, 1971, 230, 362.
- 33. K. Morishita, J. L. MacLean, B. Liu, H. Jiang, J. Liu, Nanoscale, 2013, 5(7), 2840.
- 34. J. Zhu, L. Zhang, Y. Teng, B. Lou, X. Jia, X. Gu, E. Wang, Nanoscale, 2015, 7(31), 13224.
- 35. Q. Cui, K. Ma, Y. Shao, S. Xu, F. Wu, G. Liu, N. Teramae, H. Bao, Anal. Chim. Acta., 2012, 724, 86.
- 36. K. Ma, Q. Cui, G. Liu, F. Wu, S. Xu, Y. Shao, Nanotechnology., 2011, 22(30), 305502.
- 37. K. Ma, Y. Shao, Q. Cui, F. Wu, S. Xu, G. Liu, Langmuir, 2012, 28, 15313.
- 38. Z. Huang, F. Pu, D. Hu, C. Wang, J. Ren, X. Qu, Chem. Eur. J., 2011, 17(13), 3774.
- 39. J. Peng, Y. Shao, L. Liu, L. Zhang, W. Fu, H. Liu, Nanotechnology, 2014, 25(23), 235501.
- 40. J. Peng, Y. Shao, L. Liu, L. Zhang, H. Liu, Dalt. Trans., 2014, 43(4), 1534.
- 41. J. Peng, Y. Shao, L. Liu, L. Zhang, H. Liu, Y. Wang, Anal. Chim. Acta., 2014, 850, 78.
- 42. W. Guo, J. Yuan, Q. Dong, E. Wang. J. Am. Chem. Soc., 2010, 132, 932.
- 43. W. Guo, J. Yuan, E. Wang, Chem. Commun., 2011, 47(39), 10930.
- 44. J. M. Obliosca, M. C. Babin, C. Liu, Y. Liu, Y. Chen, R. A. Batson, M. Ganguly, J. T. Petty, H.C. Yeh, ACS Nano., 2014, 8(10), 10150.
- 45. H. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez, J. H. Werner, Nano Lett., 2010, 1, 3106.
- 46. H. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez, J. H. Werner, IEEE Nanotechnol. Mag., 2011, p. 28.
- 47. L. Feng, Z. Huang, J. Ren, X. Qu, Nucleic Acids Res., 2012, 40(16), 1.
- 48. J. Park, J. Song, J. Park, N. Park, S. Kim, Bull. Korean Chem. Soc., 2014, 35(4), 1105.