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Generation of models

The data was acquired from standard force versus distance curves (FDC) and imported into Matlab1 to be 

processed. 

Then distances from the well of the curve were measured and saved as input matrices and then 

normalized      

as detailed in the main text. The process is described in detail in the main text and also  in previous 

studies2, 3. 

The feature libraries in Tables I, II and II were produced by acquiring 100-1000 data points (FDCs) per 

sample and averaging over 40-100 data points or curves. The averages of the input features are shown in 

the tables for the normalized distances dFi (i=1 …8) and were used as input features to train the artificial 

neural network.

The generated models consist of L layers and U unit cells as illustrated in in Fig. 1b  in the main text.   

The output of the models consist of a K by M matrix were K is the number of substances (or families) to 

be identified by the model and M the number of examples to be tested by the model. K is also the number 

of unit cells in the last layer of the network and each cell produces the outcome for a given sample or 

prediction. The models were generated in Matlab following the notes of Prof. Andrew Ng4. 



In this model, the cost function J to be minimized can be written as 
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Where the matrix Θ consists of the regressors to be found for the logistic regression hypotheses 

of each neuron or unit cell U, y(i) stands for  example (input feature) number i. Here an input 

feature is a particular normalized distance dF as illustrated in Fig. 1a(iii) and provided in the 

three tables in the main text. M is the number of examples to be employed to train the model, K 

is the number of outputs in the model, l stands for Layer, sl is the number of neurons in layer l, L 

is the number of layers in the model, and hθ is a hypothesis from logistic regression for the 

particular unit cell and layer.

The second term in (S1) consists of the regularization term that assists in avoiding overfitting of 

the parameters Θ. Large numbers of λ however might lead to underfitting as observed in the 

main text in Fig. 2 where the F-score is zero for the larger values of λ. In the main text we took 

λ=10e-5 for all our models since it was the largest value of λ that was consistently giving us the 

largest F-score, i.e. 1, in our models. 

The models were trained with training sets and cross-validated with cross validation sets, i.e. 

data that was not employed to generate the models. This was done to avoid overfiiting and is a 



standard procedure wen implementing neural networks.  All the F-score values given in the main 

text were produced with cross validation or test sets. 

The hypotheses for each neuron or unit cell are written in terms of the Sigmoid function as hθ(z) 
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Where Z is constructed as the scalar product of the input of the neuron and the regressors of the neuron as

(S3)
rr
 xz

The function g is the sigmoid function as previously employed by others in atomic force profiles5
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The minimization of (S1) was carried out with the standard functions optimset and fminunc from 

Matlab1 (to find the coefficients θ ) and the backpropagation algorithm. 

Part of Fig. 3 in the main text is reproduced below as Fig. S1 where an extra figure (Fig. S1e) has 

been added to show the predictions of a 3L with 4U model.  



Figure S1. Two phases of calcite P2 (pink-purple) and calcite P1 (rest of the image) acquired as a 

standard phase image in dynamic AFM. b, Prediction of the model produced from a feature library 

consisting of calcite P1 (blue), calcite P2 (green) and CaF2 (red). The black pixels refer to pixels where 

the model could not predict any output unambiguously. The two images where generated in 

approximately the same spot (80 nm2) but some thermal-drift is observed. c-e, Predictions of the models 

produced from a feature library consisting of calcite P1 (blue), and calcite P2 (green) only for the same 

raw data as b. The black pixels refer to pixels where the model could not guess any output 

unambiguously. The results are shown for models consisting of (c) 1L-2U and (d) 2L-3U and (e) 3L-4U. 

Data, models and codes

Video instructions:



We have 5 videos with instructions that explain how to use and reproduce the data and codes employed 

All the data, models and codes employed in this work can be found in the (confidential and 

private) repositories  

Dropbox:

Account: TMMFProject@gmail.com

Password: N@noscale123

Github:

Account https://github.com/TMMFProject/TMMFProject 

Password: N@noscale123

The Project will be hosted and maintained by www.future-synthesis.com 

The project aims to be open source and be extended into dedicated databases and search engines 

where the data here, and future data, algorithms and findings will also be open source mimicking 

the databases and search engines typically employed in bioinformatics assisted biology, i.e. 

MEDLARS or PRIDE. 
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